6-10

05.14.02 –

· · ·,

				4
				5
1.			1	1
1.1			1	1
1.2			1	7
1.3			2	23
1.4			3	32
2.			3	3
2.1			3	34
2.2			4	12
2.3			5	8
2.4			6	59
3.	:	_	_ 7	7 1
3.1			7	1
3.2			7	15

3.3		84
3.4		100
4.		102
4.1	-	102
4.2		111
4.3		120
4.4	RC-	125
4.5		128
		130
		132
	1	145
	2	146
	3	147
	4	148
	5	149

_

_

_

_

_

_

_

_

_

_

_

,

,

(). 40% 6-10

- [49].

. - , ()

, - ,

. - ,

; ,

,

, 2000 - 2006 .

, , , () RC- .

,

, , ,

« – – ()»

, ,

, .

« – – ()»

6 - 10 .

i. 1.

6-10

2. 3. **«** ()» 4. 6 - 10)», 6-10 6-10 1. (),

7

2. 3. 4. 1. **«** 2. RC-1,8 3.),

:

: « », « », « », « », « »,
« », « 2006
2010 .

,

6-10 , « -»; « »; « »; « »;

1.

2.

()

3. - : - 6-10 ,

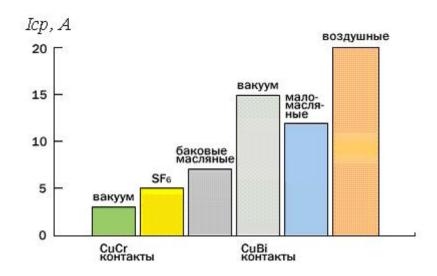
```
4.
                                                       «
                                      ».
                                           : I
                                     -2008» ( .
                                                             , 2008 .);
         » ( .
                         , 2004 .);
                                » (.
                                                    , 2005 .); VIII
«
                                                 «
                              » ( .
                                              , 2007 .);
           » ( .
                          , 2005 .);
                                                          , 2006 .).
                                                 » ( .
                                                           9
                 : 1
                                            , 2
        , 6
                                                                    81
                                                                   144
                           43
                                          37
```

1.

1.1.

6-10

, [39, 51, 70, 75].


[6, 34, 48].

(

```
)
                                               ).
),
                                                        [64].
         (
     ).
 [11].
             50
                                     [24, 64].
```

)

. 1.1 [78].

1.1 -

1.1,

, [23], 2,5 – 6 .

(rotary-arc type) (self-pressurising type)

•

. (puffer type)

[23]. ,

()

14). [39, 49]. (**«** [2, 48]. (100 5÷10). [23]. 6-7 [39]

:

 $k_{\max} = \frac{U_{\max}(t)}{U},\tag{1.1}$

 $U_{\max}(t)$ - () ();

U - .

,

100÷250

 $(k_{\text{max}}=2),$

 $(k_{max}=2)$ $(k_{max}=2,8),$

 $(k_{\text{max}}=5).$

 k_{max}

7U . 500÷1000

 $(2,8\div2,9)U$.

=1500

.

,

•

. ,

3,4

1250 , , 20-200

.

,

,

, :

,

,

· ,

1.1 -

1.1.

2

1	2,6-3,3

3	4,0 – 4,5
4	3,0 – 3,5

5	3,0 – 4,5

	6	5,0-6,0
ſ		

7	4,0-6,0
8	5.0 - 6.0

1.1 [2, 39, 49].

[75]

6 . ,

 $4,7 \div 6,1,$,

 $, -3.5 \div 4.2.$ [39]

, 2,4.

1.1,

.

[11, 42, 69].

1.2.

3 – 750 ". , -

1000

[67].

```
3,2U
                             (
                   [75].
                                                     ).
                                            ZnO
                                   1
                               /TEL
                                                (2,4 \div 3,0)U.
              /TEL
[58].
```

[17, 18].

,

, [39, 49].

 $0,1 \div 0,5$.

·

,

,

[16, 39].

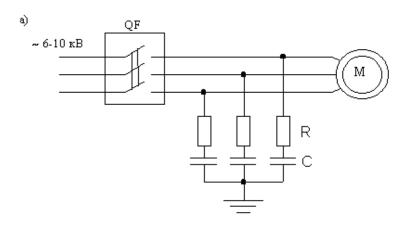
, RC- $RC- \\ 0.1 \div 0.5$

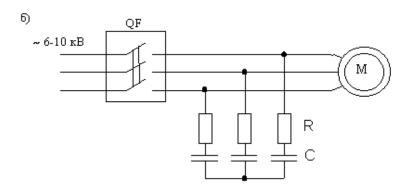
 $25 \div 100$, .

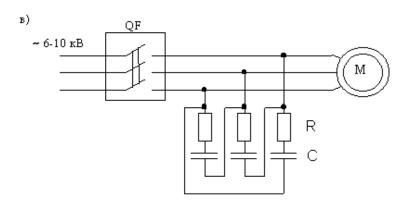
,

,

[15, 16, 68].


RC- (. .


1.2).


[18]

RC-

RC- .

1.2 - RC - :

)

() [79]. C (. L, R 1.3),).

RC-

. , ,

. [67]

,

I < 600 ,

ВВ <u>L</u> <u>M</u> С <u>R</u>

1.3 - :

 $L- \hspace{1.5cm} ; R- \hspace{1.5cm} ;$

1.2 -

50		50	300	300
-		-	-	
- 6/6.9 10/11.5*	- 6/6.0 10/10.5	- 6/6.9 10/11.5*	- 6/6.9 10/11.5*	
	**	" -		

- , 1 ,

-

** - ,

. " - " -

6/6.9 10/11.5

•

,

,

,

•

1.3.

[51, 30], [40, 76] [70].

,

•

,

[39].

[39, 40, 49]

, [40]

.

 $U \qquad (t) = e^{\Gamma_1 t} \times \left(\left(\frac{-i \quad (0) - U \quad (0) \Gamma_1 C}{\breve{S}_1} \right) \sin(\breve{S}_1 \quad t) + U \quad (0) \cdot os(\breve{S}_1 t) \right)$ (1.2)

 $\Gamma_1 = -\frac{R_C}{2L_C} \qquad - \qquad ; \quad R_C - \qquad ;$

; L_C - ; L

; i (0) -

; C -

; C_C - ; U (0) -

 $\sqrt{2}$

 $\check{S}_{1} = \sqrt{\left(\frac{R_{C}}{2L_{C}}\right)^{2} - \left(\frac{C - L_{C}C}{L_{C}C}\right)} - C$

$$U \qquad (t) = \qquad U \qquad \sin(\check{S}t + \mathbb{E}_{11}) + e^{\Gamma_1 t} \times \left(\left(\frac{-i \quad (0) - \check{S} \qquad U \qquad \cos(\mathbb{E}_{11}) \qquad -U \qquad (0) \Gamma_1 C}{\check{S}_1} \right) \sin(\check{S}_1 t) + U \qquad (0) \cdot sos(\check{S}_1 t) \right) \qquad (1.3)$$

[39]

:

$$\mathbf{u}_{\perp}(t) = \mathbf{U}_{m} \sin(t + \mathbf{u}_{11}) + e^{-t} \times \left\{ \left(\frac{-\mathbf{i}_{1}(0) - \mathbf{U}_{m} \cos(\mathbf{u}_{11}) \mathbf{C} - \mathbf{S}_{2}(\mathbf{u}_{11})}{\mathbf{I}^{2}} \right) \sin(\mathbf{u}_{11}t) + \mathbf{u}_{\perp}(0) \cos(\mathbf{u}_{11}t) \right\}$$
(1.4)

$$S_{1} = -\frac{\mathbf{i}_{1} (0) - \times U_{m} \cos(1) C - S_{2} C}{B_{1} C}$$

$$S_{2} = \mathbf{u} (0) - \mathbf{u}$$

$$; \Gamma_1 = -\frac{R_C}{2L_C} -$$

$$R_C$$
 - ; L_C -

L - ; i (0) -

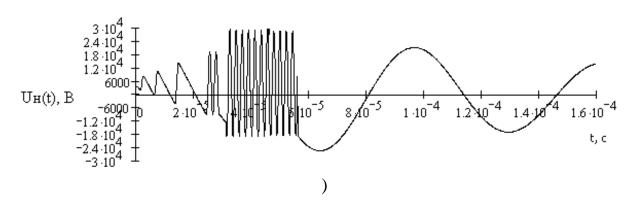
; C -

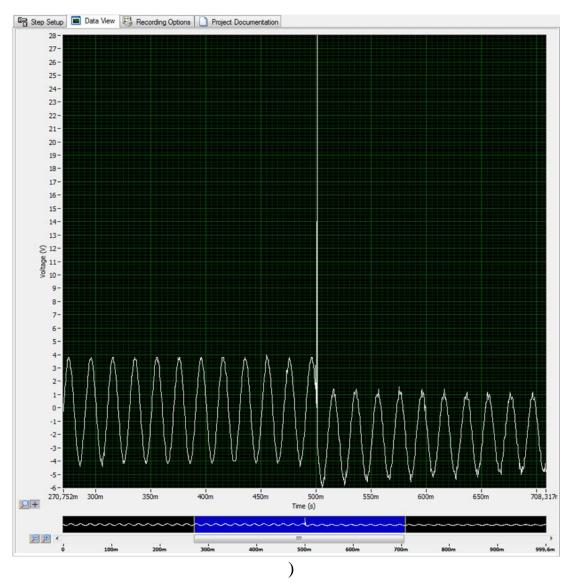
;
$$C_C$$
 - ; U (0) -

$$\tilde{S}_{1} = \sqrt{\left(\frac{R_{C}}{2L_{C}}\right)^{2} - \left(\frac{C - L_{C}C}{L_{C}C}\right)} - C$$

1.2, 1.3 1.4

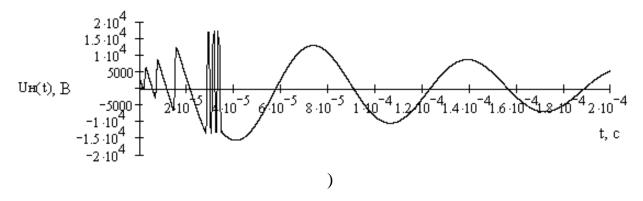
, ,

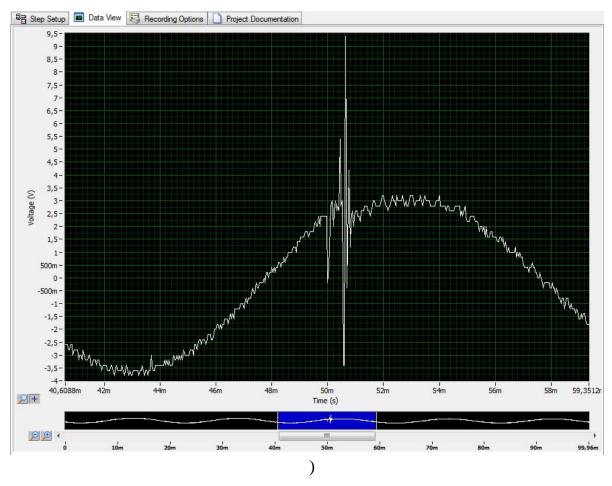

	250 630		, 5 2,9	[39],
20%	1250 ,			
	, 1,4 ,	, (1.4).	,	
•	,		,	, :
•				;
•			,	50 ;


1.4 1.5

250 630

6 ,


.



1.4 –

250
) , max=5
) max=7

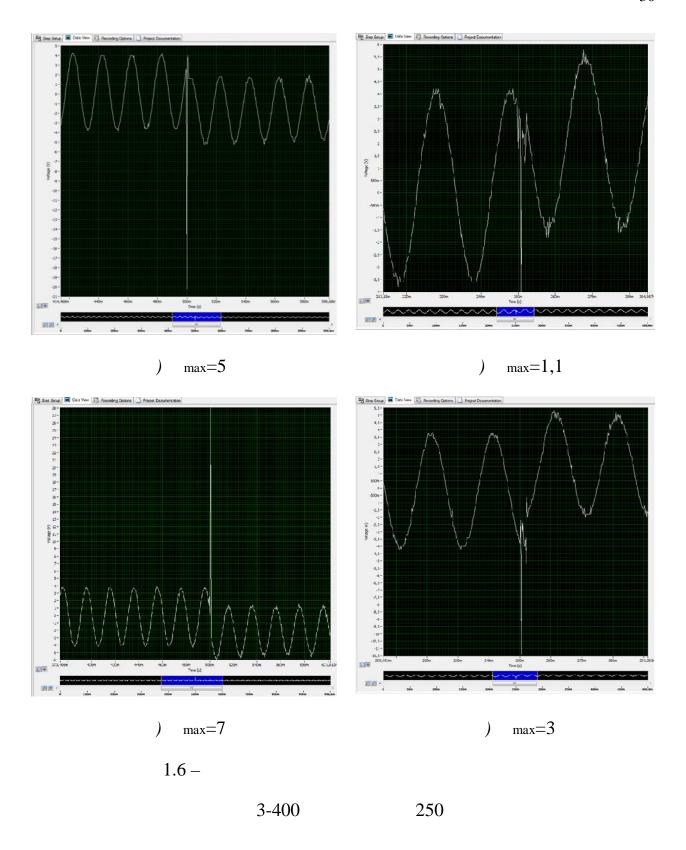
,

,

-5,

7U ,

1,1U


				•			
					,		
				,	:		
					,		
		•					
	;			;			
		•					
				•			
			,			,	
(,			,).		
	,				,		
				,			
				,			
					[71].		
				:		,	
		,		,			
		,					, -
				,			
		,					
			1.6,				
							3.

, - ,

250

400

.

,

•

,

,

,

•

,

• ,

•

:

- ,

•

,

·
,

2 .

1.4.

: 1 ,

2

3

4 ,

5

2.

•

1980 2007 . . «

« »

>>

,

,

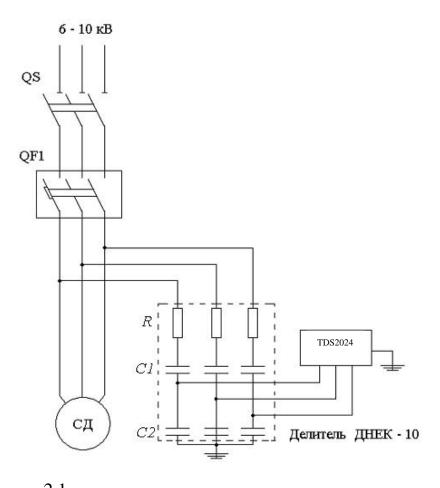
. ,

4000

,

,

2.1.

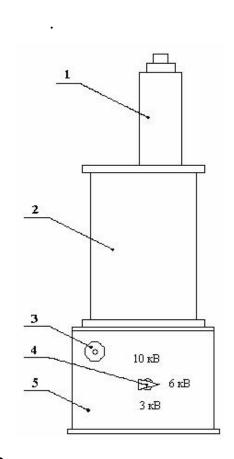

2.1.1.

Tektronix TDS2024B,

() Toshiba Satellite A200-

1M8,

2.1.


2.1 -

Tektronix TDS2024B:

5-24; 5%;

20-2000 7,5; $-10 + 40^{0}$; 80 %; 86-106.

(), 2.2.

2.2 -1 - ; 2 - ; 3 -; 4 - ; 5 - .

, , ,

- . -

```
)
«
                 »,
                     ),
                              ).
                                                                          6-10
                                                  5
                                                                 6-10
                                3
```

-10:

U = 10 ; U = 76 1195, 2400, 4000; 0,77%; $-10 + 40^{0} ;$ 80%; 86-106 .

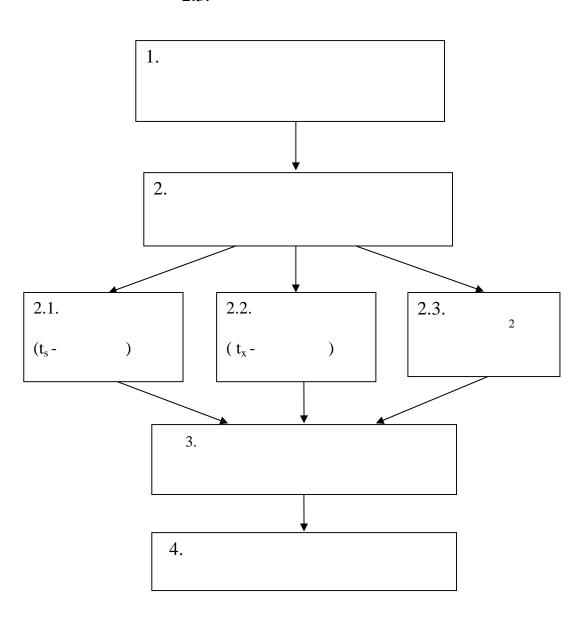
Tektronix.

,

:

_

•


,

,

•

2.1.2.

2.3.

3

• , ,

:

$$-\frac{1}{n_i} = \frac{1}{n_i} \sum_{j=1}^{n_i} Z_{ij} , \qquad (2.1)$$

 n_i - ;

 z_{ij} — .

 $D_{I} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} \left(z_{ij} - \bar{X}_{ij} \right)^{2}.$ (2.2)

 $S_i = \sqrt{D_I} \ . \tag{2.3}$

:

$$V = \frac{S_i}{-}. (2.4)$$

•

, ,

,

:

1. ;

2. ;

3. ² .

 $t_{\overline{X}}$,

$$t_{\bar{X}} = \frac{\left| \overline{X}_{i} - \overline{X}_{j} \right|}{\sqrt{\frac{S_{i}^{2}}{n_{i}} + \frac{S_{j}^{2}}{n_{j}}}} \bullet \sqrt{\frac{n_{i} \cdot n_{j} (n_{i} + n_{j} - 2)}{n_{i} + n_{j}}},$$
(2.5)

 \overline{X}_i - ;

 \overline{X}_{j} - ;

 n_i - ;

 $n_{\rm j}$ -

 t_s , :

$$t_{s} = \frac{\left|S_{i} - S_{j}\right|}{\sqrt{\frac{S_{i}^{2}}{2n_{i}} + \frac{S_{j}^{2}}{2n_{j}}}},$$
(2.6)

 S_i ;

 $\mathrm{S_{j}}-$

2

«STATISTICA».

2

 $\{X^2\},$,

 t_{s} 3, $t_{\overline{X}} \leq 3$, $\{X^{2}\} > 0.05$,

.

• ,

.

•

,

, ,

.

V > 0.3: $<_{m} = \sqrt{\left(\frac{\cdot n - 1}{n} \cdot \frac{Z_{\text{max}}}{-} - 1\right)},$ (2.7)

 $=\frac{1}{V^2}.$

V 0,3:

 $\leftarrow = \frac{Z_{\text{max}} - \overline{X}}{S} .$ (2.8)

n, [26], s_n^+ , Z_{max}

 $\langle n \rangle S_n^+$.

,

2.2.

320 3200 , 200 6000

500, 1250, 2500 . 30

150 .

« - »,

(2.1-2.2)

, , ,

,

2.1 -

		_	D	S	V	kma x
1	:	4,18	2,3	1,52	0,363	6,5
	(Zi) 3,2; 3,8; 4,4; 4,6;4,3; 5,1; 5,6; 5,9; 2,8; 6,5; 2,3; 2,1; 1,8; 1,9; 6,5; 3,6; 3,9; 5,6; 5,8; 6,3;5,6; 3,2;4,6; 2,9; 2,2; 3,8; 6,5; 3,7; 4,2; 5,7; 5,3; 4,0; 2,1; 1,8; 2,7.					

_	. 10.12.5/620.					
2	:	3,27	1,79	1,34	0,409	5,2
3	1,7; 2,7; 4,0; 2,6; 4,6; 5,0. :	2,35	0,50	0,70	0,302	3,4
	(Zi) 1,2; 1,6; 1,8; 2,7; 2,3; 2,5; 2,8; 1,9; 2,2; 2 0; 3,4; 3,1; 1,6; 1,4					
4	(21) ;1,3; 2,9; 3,3; 1,4; 2,7; 3,4; 1,5; 2,2; 2,6; 2,4; 2,8; 3,3; 3,4; 2,1. 	2,89	0,97	0,98	0,342	4,5
	(Zi) 3,0; 2,2; 2,6; 3,3; 1,8; 4,5; 1,6; 1,5; 4,0; 1,3; 2,7; 3,3; 3,0; 4,4; 1,6; 2,7; 2,1; 3,9; 1,9; 2,5; 4,5; 3,4; 3,6; 2,7; 3,1; 3,9; 4,1; 1,6.					
5	:	2,37	0,71	0,84	0,356	3,6
	(Zi) 2,5; 2,7; 2,1; 2,1; 2,5; 1,8; 1,4; 3,6; 1,7; 1,2; 3,5; 3,6; 2,9; 1,6; 3,0; 3,4; 1,5; 1,5; 2,7; 2,9; 2,2; 2,4; 2,9; 1,2; 3,4; 1,3.					
6	:	1,83	0,14	0,38	0,209	2,4
	(Zi) 1,2; 1,6; 2,4; 2,2; 1,8; 2,0; 1,9; 1,6; 1,7; 2,2; 2,0; 2,3; 1,6; 1,5; 1,4; 2,3; 2,0; 1,2; 2,4; 1,3; 1,6; 1,5; 2,2; 1,6; 2,4; 2,1; 1,5.					
7	, - : 6-10/630 - 6; - : -14- 29-6 2; =500 ; n=750 / ; : : : : (3 95); L=120 .	1,93	0,13	0,36	0,19	2,5
8	(Zi) 1,8; 2,6; 2,0; 1,3; 1,9; 2,1; 2,5; 1,7; 1,6; 2,1; 2,0; 1,8; 2,6; 1,8; 1,7; 2,4; 1,9; 1,6; 1,9; 2,1; 1,7; 2,5; 1,8; 1,2; 1,6; 2,1. , -: 10-12,5/630; -: -15-39-6 2; =1250; n=1000 /; : (3 95);					
	2; =1230 ; H=1000 / ; (3 93); L=150 .	3,25	0,9	0,94	0,292	4,8
	(Zi) 3,6; 3,8; 2,9; 2,1; 4,8; 2,8; 1,7; 3,9; 4,8;3,6; 4,0; 4,1;2,8;3,0; 3,8; 3,4.					
9	: , - : 10-20/630 - 2; - : 2-17-57-6 2; =2500 ; n=750 / ; : (3 120+1 35); L=150 ; : - 20/90.	2,0	0,3	0,6	0,304	1,7
	(Zi) 1,4;1,6;1,6;1,1;1,7;1,7;1,6;1,1;1,2;1,7;1,4;1,3.					

2.1

10	:	3,29	1,67	1,29	0,392	5,2
11	, - : -10-12,5/630; - : -14-29-6 2; =500 ; n=750 / ; : (3 95); L=40 . (Zi) 2,8; 2,7; 3,2; 4,6; 6,5; 5,2; 4,1; 1,9; 2,8; 4,7; 5,0; 6,2; 6,5; 1,7; 5,8; 4,3; 3,5; 2,9; 3,2; 2,7; 1,9; 5,5; 6,5; 2,1; 4,6; 3,9; 5,9; 6,1.	4,17	2,36	1,54	0,368	6,5
12	« », - : 10-20/630 - 6; - : ; =500 ; n=750 / ; : (3 95); L=48 . (Zi) 3,6; 3,4; 4,8; 4,2; 4,7; 4,7; 6,0; 5,5; 3,2; 6,1; 2,7; 1,7; 2,2; 1,5; 6,1; 4,0; 3,4; 6,0; 5,4; 6,5; 5,3; 3,6; 4,2; 2,5; 2,6; 3,4; 5,3.	4,17	2,09	1,45	0,347	6,5
13	<pre>"</pre>	4,19	2,25	1,5	0,359	6,3

2.2 -

				1		
		_	D	S	V	kma x
1	:	3,34	2,23	1,49	0,447	6
2	:	3,24	1,74	1,32	0,408	5,2

3	« » , -: -10-12,5/630 – 2;					
J	- : , =2500 ; n=750 / ; :					
	(3 120); L=42 .	2.60	0.07	0.03	0.240	
		2,69	0,87	0,93	0,348	4
	(Zi) 2,6; 3,8; 2,1; 1,3; 1,9; 2,5; 2,9; 3,2; 1,6; 1,2; 2,7; 4,0; 3,9; 2,8;					
	1,0; 2,1; 3,9; 1,3; 2,4; 2,0; 3,1; 3,4; 1,2; 4,0; 2,0; 3,0; 4,0.					
4	: , - : -10 -12,5/630; - :					
	-500LB; =500 ; n=1000 / ;					
	$(3 \ 35+1 \ 25), L= 45 ; : -12,5$	2,74	1,00	1	0,365	4,2
		2,7 .	1,00	•	0,505	1,2
	(Zi) 1,8; 1,6; 3,2; 2,6; 2,3; 3,3; 4,2; 3,8; 4,0; 1,2; 1,5; 3,2; 2,6; 3,9;					
<u> </u>	4,2; 1,1; 2,0; 2,1; 2,9; 3,1; 3,9;2,0; 4,1; 1,0; 1,2; 3,2; 3,3; 2,1.					
5	, -: -10-20/630; -:					
	-16-62-10 2; =1250 ; n=1000 / ; : (3 95); L=45 .					
	. (3 73), L-43 .	2,38	0,62	0,79	0,332	3,6
	2,8; 2,2; 2,6; 1,4; 1,7; 3,6; 2,9; 3,0; 1,5; 2,7; 2,2; 2,9; 3,4; 1,2;	1				
	(Zi) 2,8; 2,2; 2,6; 1,4; 1,7; 3,6; 2,9; 3,0; 1,3; 2,7; 2,2; 2,9; 3,4; 1,2; 1,3; 2,3; 3,0; 1,6; 3,3; 1,6; 3,5; 1,2; 3,6; 1,8; 2,1; 2,5.					
6	, - : 10-20/630- 2; - : ,					
6	=2500 ; n=750 / ; : (3 120);					
	L=43 .	_		_		_
		2,09	0,34	0,58	0,282	2,9
	1,8; 1,7; 2,1; 2,3; 2,6; 2,0; 2,7; 1,3; 2,9; 2,8; 1,1; 1,2; 2,9; 1,9;	1				
	(Zi) 1,7; 2,6; 2,1; 2,5; 2,0; 2,7; 1,3; 2,9; 2,0; 1,1; 1,2; 2,9; 1,5; 1,7; 2,6; 2,1; 2,6; 2,3; 2,8; 1,6; 1,4; 2,9; 1,1; 2,0; 2,1.					
7	, - : 10-20/630- 2; - : ,					
'	=1250 ; n=1000 / ; : (3 120);					
	L=78 .	1,74	0,09	0,30	0,174	2,2
		1,/4	0,09	0,50	0,1/4	۷,۷
	(Zi) 1,6; 2,3; 1,4; 2,0; 1,8; 1,7; 1,9; 2,1; 1,3; 1,6; 1,7; 1,4; 2,3; 1,3;					
	1,9; 2,1; 1,6; 2,2; 1,8; 1,2; 1,9; 1,8; 1,7; 2,0; 1,4					
8	, - : /TEL10-20/1000; - :					
	-90/77; =500 ; n=750 / ;					
	(3 95); L=150 .	3,323	2,41	1,55	0,466	5,2
	26.21.22.44.45.26.52.15.51.60.24.52.22.12	1				
1	(Zi) 2,6; 3,1; 3,2; 4,4; 4,5; 3,6; 5,3; 1,5; 5,1; 6,0; 2,4; 5,2; 2,3; 1,2;	1	1		Ì	
	(Zi) 2 3 · 1 2 · 2 7 · 3 5 · 3 0 · 5 0 · 5 0 · 4 7 · 2 0 · 1 2 · 1 7 · 2 0					
0	2,3; 1,2; 2,7; 3,3; 3,9; 5,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0.					
9	2,3; 1,2; 2,7; 3,5; 3,9; 5,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0. , -: -10-12,5/630; -: -90/77;					
9	2,3; 1,2; 2,7; 3,3; 3,9; 5,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0.					
9	2,3; 1,2; 2,7; 3,5; 3,9; 5,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0. , -: -10-12,5/630; -: -90/77; =500 ; n=750 / ; : (3 95);	3,32	2,02	1,42	0,428	5,7
9	2,3; 1,2; 2,7; 3,5; 3,9; 3,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0. , -: -10-12,5/630; -: -90/77; =500 ; n=750 / ; : (3 95); L=320 .	3,32	2,02	1,42	0,428	5,7
9	2,3; 1,2; 2,7; 3,5; 3,9; 5,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0. , - : -10-12,5/630; - : -90/77; =500 ; n=750 / ; : (3 95); L=320 .	3,32	2,02	1,42	0,428	5,7
	Z,3; 1,2; 2,7; 3,5; 3,9; 3,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0. , -: -10-12,5/630; -: -90/77; =500 ; n=750 / ; : (3 95); L=320 . (Zi) 3,6; 2,1; 4,3; 3,3; 4,8; 3,9; 5,4; 1,4; 5,0; 2,8; 3,6; 1,9; 5,8; 1,1; 2,0; 1,5; 3,5; 1,3; 5,7; 4,2; 3,6; 2,2; 4,1; 3,2; 4,3; 1,7. :« », -: /TEL-10-20/1000; -:	3,32	2,02	1,42	0,428	5,7
9	Z,3; 1,2; 2,7; 3,5; 3,9; 3,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0.	3,32	2,02	1,42	0,428	5,7
	Z,3; 1,2; 2,7; 3,5; 3,9; 3,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0. , -: -10-12,5/630; -: -90/77; =500 ; n=750 / ; : (3 95); L=320 . (Zi) 3,6; 2,1; 4,3; 3,3; 4,8; 3,9; 5,4; 1,4; 5,0; 2,8; 3,6; 1,9; 5,8; 1,1; 2,0; 1,5; 3,5; 1,3; 5,7; 4,2; 3,6; 2,2; 4,1; 3,2; 4,3; 1,7. :« », -: /TEL-10-20/1000; -:					
	Z,3; 1,2; 2,7; 3,5; 3,9; 3,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0. , -: -10-12,5/630; -: -90/77; =500 ; n=750 / ; : (3 95); L=320 . (Zi) 3,6; 2,1; 4,3; 3,3; 4,8; 3,9; 5,4; 1,4; 5,0; 2,8; 3,6; 1,9; 5,8; 1,1; 2,0; 1,5; 3,5; 1,3; 5,7; 4,2; 3,6; 2,2; 4,1; 3,2; 4,3; 1,7. :«	3,32	2,02	1,42	0,428	5,7
	Z,3; 1,2; 2,7; 3,5; 3,9; 3,0; 5,0; 4,7; 2,9; 1,3; 1,7; 2,0.					

2.2.1.

,

,

,

•

2.3, – 2.4.

2.3 -(– 2.1)

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	1 4	125	2,3	61	83	0,045	
2	2 5	95,4	2,51	59	83	0,035	
3	3 6	93,6	3,02	53	77	0,025	

2.4 - (2.2)

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	1 4	58,9	2,2	61	86	0,03	
2	2 5	91,8	2,71	58	80	0,04	
3	3 6	73,2	2,32	51	70	0,04	

2.3 2.4 ,

(

,

•

.

2.2.2

,

.

2.5, – 2.6.

2.5 - (2.1)

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}
1	1 3	194	3,96	61	86	0,03
2	1 2	89,7	0,75	67	90	0,045
3	2 3	105	3,32	60	84	0,03
4	4 5	55,3	0,82	52	74	0,04
5	5 6	78	3,58	51	75	0,03
6	4 6	143,1	4,33	53	79	0,03

2.6 - (2.2)

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	1 3	194	3,96	61	86	0,03	
2	1 2	89,7	0,75	67	90	0,045	
3	2 3	105	3,32	60	84	0,03	
4	4 5	55,3	0,82	52	74	0,04	
5	5 6	78	3,58	51	75	0,03	
6	4 6	143,1	4,33	53	79	0,03	

2.5 2.6

2.2.3.

,

2.7 2.8 , ,

•

,

2.7 - (- 2.1)

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	4 7	127,1	4,38	52	76	0,03	
2	8 2	2,23	1,94	63	48	0,93	
3	9 3	51,8	0,8	52	74	0,04	

2.8 - (2.2)

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	2 8	0,753	0,216	59	43	0,96	
2	8 9	0,619	0,445	50	36	0,94	
3	5 7	98,3	4,17	50	74	0,03	

,

, 2500 .

2500 ,

« » ,

, 2500 ,

, , 45 .

, ,

·

2500 ,

, ,

25-30 .

, ,

,

,

 $U = i_0 \sqrt{\frac{L}{C}} , \qquad (2.9)$

 i_0 - ;

2.2.4.

,

•

;

,

. . .

,

2.9 2.10

.

2.9 - (2.1)

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}				
1	1 11	0,635	0,073	61	44	0,95				
2	1 12	0,798	0,268	60	43	0,95				
3	1 13	0,758	0,07	59	42	0,95				
4	11 12	0,149	0,316	53	36	0,96				
5	12 13	1,15	0,14	52	37	0,94				

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	9 10	2,46	0,625	59	43	0,94	

2.9 2.10

,

2.2.5.

[57, 79]

, « - »,

,

, 2.1

« - », . 2.11

.

2.11 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	2 10	1,96	0,217	63	46	0,94	

2.11 , ,

·

,

. , [4], ,

1,8 - 2

2.2.6.

,

),

,

2.12.

2.12 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}
1	. 2. 1 (4)	15,5	0,1	54	73	0,048
2	. 2. 1 (5)	1,2	0,34	50	35	0,94
3	. 2.1 (6)	49,7	2,1	51	70	0,049

2.12 ,

1250

, 1250

•

.

.

2.13 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	. 2. 1 (1) . 2.2 (1)	82,66	0,12	69	94	0,04	
2	. 2. 1 (2) . 2.2 (2)	2,4	0,16	68	52	0,93	
3	. 2. 1 (3) . 2.2 (3)	41	1,44	53	74	0,04	

2.13 ,

,

,

1250 , 1250 ,

,

1250 .

1250 ,

•

2.2.7.

,

. 2.14

2.15

,

, 2.1 2.2,

2.14 -

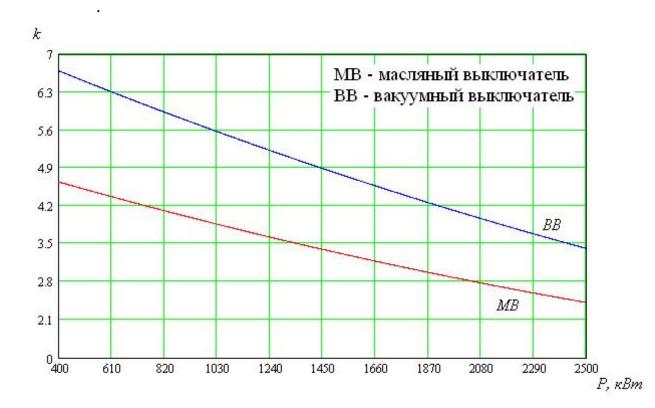
					2.1	
	1	2	3	4	5	6
S _m ⁺	3,4	3,45	3,1	3,15	3,2	3,1
< _m	1,51	1,42	1,47	1,608	1,43	1,49
$S_m^+, <_m$	<m<sm^+< th=""><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th><m<sm< th=""></m<sm<></th></m<sm^+<>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	<m<sm< th=""></m<sm<>
	-	-	-	-	-	-
\mathbf{Z}_{\max}	6,5	5,2	3,4	4,5	3,6	2,4

2.15 -

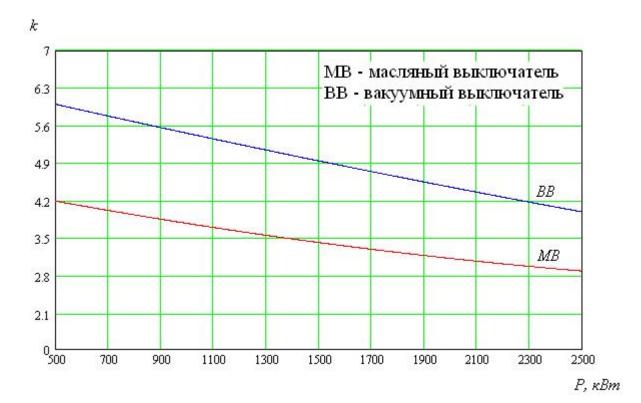
					2.2	
	1	2	3	4	5	6
S _m ⁺	3,65	3,45	3,2	3,23	3,15	3,1
< _m	1,74	1,46	1,38	1,44	1,52	1,36
$S_m^+, <_m$	<m< m<<="" s+="" th=""><th><m<sm^+< th=""><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th>< m < S_m +</th><th><m<s<sub>m⁺</m<s<sub></th></m<sm^+<></th></m<>	<m<sm^+< th=""><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th>< m < S_m +</th><th><m<s<sub>m⁺</m<s<sub></th></m<sm^+<>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	< m < S _m +	<m<s<sub>m⁺</m<s<sub>
-	-	-	-	-	-	-
$\mathbf{Z}_{ ext{max}}$	6,0	5,2	4,0	4,2	3,6	2,9

,

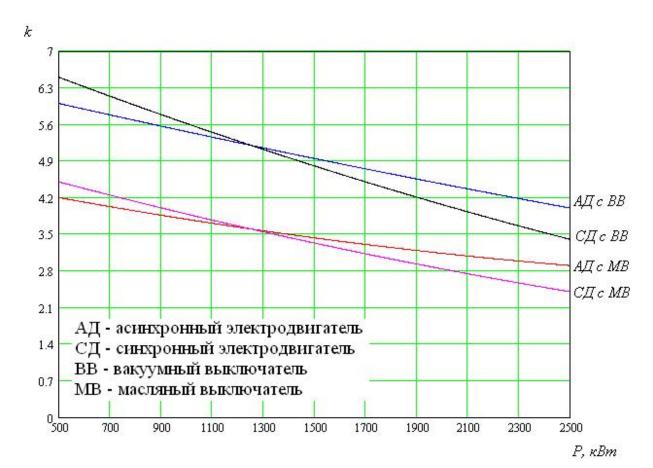
.


2.1 2.2,

45 .


Mathcad [21].

2.4 2.5


2.6

2.4 -

2.5 -

2.6 -

1250

. 1250

,

1250 ,

2.3.

100 6300 .

250, 630, 1000 .

30 350 .

« - »,

•

2.16 - 2.17

		_	D	S	V	kma x
1	: « », - : 10-12,5/630; - : -250; S=250 ; : (3 70); L=35 .	2.01	0.74	0.06	0.206	4.2
	(Zi) 3,2; 3,8; 4,3; 4,0;4,3; 2,1; 2,6; 2,9; 2,8; 3,5; 2,3; 2,1; 1,8; 1,9; 3,5; 3,6; 2,9; 2,6; 1,8; 2,3;1,6; 3,2;4,0; 2,9; 2,2; 3,8; 1,5; 3,7; 4,2; 2,7; 2,3; 4,0; 2,1; 1,8; 2,7.	2,81	0,74	0,86	0,306	4,3
2	: « », - : 10-12,5/630; - : -630; S=630 ; : (3 70); L=42 .	2,5	0,52	0,72	0,288	3,6
	(Zi) 3,0;2,5;3,6;2,4;2,5;3,0; 3,2; 3,6; 2,8; 1,2; 2,6; 2,1; 1,9; 1,7; 3,3; 1,4; 3,2; 1,8; 2,8; 3,2; 1,9; 3,0; 2,1; 1,6; 1,2; 2,4; 1,3; 2,8; 3,5; 1,7; 2,7; 3,0; 2,6; 2,6; 3,6.	2,3	0,32	0,72	0,200	3,0
3	: « », - : 10-12,5/630; - : -1000; S=1000 ; : (3 70); L=40 .	2,35	0,50	0,709	0,302	3,4
4	1,3; 2,9; 3,3; 1,4; 2,7; 3,4; 1,5; 2,2; 2,6; 2,4; 2,8; 3,3; 3,4; 2,1. : « », - : 10-10/630 - 2; - : -250; S=250 ; : (3 70); L=40 .	1,9	0,14	0,37	0,19	2,5
	(Zi) 2,5; 2,2; 2,0; 2,3; 1,8; 2,5; 1,6; 1,5; 2,0; 1,3; 1,7; 1,3; 2,0; 2,4; 1,6; 1,7; 2,1; 1,9; 1,9; 2,5; 2,5; 1,4; 1,6; 2,0; 2,1;1,9; 2,1; 1,6.					
5	: « », - : -10-20/630 - 2; - : -630; S=630 ; :(3 70); L=45 .	1,45	0,03	0,182	0,125	1,7
	(Zi) 1,2; 1,6; 1,4; 1,7; 1,7; 1,5; 1,3; 1,6; 1,7; 1,2; 1,5; 1,3; 1,6; 1,5; 1,4; 1,3; 1,5; 1,2; 1,7; 1,3; 1,6; 1,5; 1,2; 1,6; 1,4; 1,1; 1,5.	, -	,,,,	, -		,
6	: « », - : 10-20/630 – 6; - : 1-35 . (3 70);	1,32	0,02	0,148	0,112	1,5
	(Zi) 1,2; 1,6; 2,4; 2,2; 1,8; 2,0; 1,9; 1,6; 1,7; 2,2; 2,0; 2,3; 1,6; 1,5; 1,4; 2,3; 2,0; 1,2; 2,4; 1,3; 1,6; 1,5; 2,2; 1,6; 2,4; 2,1; 1,5.					
7	: « », - : 6-10/630 – 6; - : -250; S=250 ; : (3 70);	1,39	0,04	0,219	0,157	1,7
8	(Zi) 1,7; 1,6; 1,2; 1,3; 1,1; 1,1; 1,5; 1,7; 1,6; 1,1; 1,2; 1,4; 1,6; 1,4; 1,7; 1,4; 1,3; 1,6; 1,3; 1,1; 1,7; 1,5; 1,2; 1,2; 1,6; 1,1. : « », - : 10-12,5/630; -					
8	: -630; S=630 ; : 10-12,3/030, - : -630; S=630 ; : (3 70); L=150 .	1,79	0,10	0,325	0,182	2,2
	(Zi) 1,6; 1,8; 1,9; 2,1; 1,8; 1,7; 1,9; 2,2; 1,6; 2,0; 2,1; 2,0; 1,3; 1,8; 1,4.					

2.16

9	: « », - : 10-20/630 – 2; - : -1000; S=1000 ; : (3 70); L=150 . (Zi) 1,2; 1,4; 1,6; 1,1;1,5; 1,6; 1,7; 1,2; 1,3;1,6; 1,9; 1,7; 1,3; 1,4; 1,6;1,6; 1,2; 2,1; 1,7; 1,7; 1,6; 2,1; 1,2; 1,7; 2,0; 1,3 .	1,54	0,07	0,281	0,182	2,1
10	:	2,45	0,50	0,711	0,29	3,6
11	<pre></pre>	3,07	0,72	0,85	0,276	4,4
12	« », - : 10-20/630 – 6; - : -250; S=250 ; : (3 70); L=48 . (Zi) 3,6; 3,4; 4,0; 4,2; 2,7; 1,7; 4,3; 3,3; 3,2; 4,3; 2,7; 1,7; 2,2; 1,5; 3,1; 4,0; 3,4; 3,0; 3,4; 2,5; 2,3; 3,6; 4,2; 2,5; 2,6; 3,4; 2,3.	3,07	0,67	0,82	0,267	4,3
13	<pre></pre>	3,08	1,16	1,08	0,35	4,4

2.17 -

		_	D	S	V	kma x
1	: « », - : 10-12,5/630; - : -250; S=250 ; : (3 70); L=40 .					
	(Zi) 2,9; 2,8; 3,6; 4,0; 4,1; 4,6; 4,7; 2,1; 5,1; 5,0; 1,6; 6,0; 1,4; 1,7; 1,3; 2,2; 2,8; 3,4; 3,7; 5,0; 5,0; 5,1; 3,9; 2,3; 4,7; 4,3; 2,2; 2,7; 3,9; 5,1; 2,1; 1,6; 1,8; 1,7; 1,5.	3,26	1,80	1,34	0,411	5,1
2	: « », - : 10 - 12,5 / 630; - : -630; S=630 ; : (3 70); L=38 .	2,88	1,01	1,004	0,35	4,2
	(Zi) 2,4; 2,3; 3,6; 4,2; 1,1; 1,8; 3,2; 3,3; 4,0; 4,0; 4,2; 1,3; 1,2; 3,6; 2,1; 2,7; 3,2; 4,1; 3,9; 1,6; 2,7; 2,3; 2,5; 4,0; 3,1; 1,7; 1,3; 1,8; 2,7; 2,9; 3,3; 4,2; 4,1; 3,8.	2,00	1,01	1,004	0,33	7,2

2.17

3		: « », - : -10-12,5/630 – 2;					
	- : L=42 .	-1000, S=1000 ; : (3 70);					
			2,44	0,63	0,797	0,326	3,7
		2,6; 3,7; 2,1; 1,3; 1,9; 2,5; 2,9; 3,2; 1,6; 1,2; 2,7; 2,0; 3,7; 2,8; 1,6; 2,1; 3,0; 1,5; 2,4; 2,6; 3,1; 3,4; 1,2; 3,0; 2,6; 3,6; 3,7.					
4	-250	: « », - : -10 -12,5/630; - : ; S=250 ; : (3 70), L= 45	2,18	0,31	0,559	0,256	3
	(Zi)	1,8; 1,6; 3,0; 2,6; 2,3; 2,3; 2,2; 2,8; 2,0; 1,2; 1,5; 2,2; 2,6; 3,0; 2,2; 1,1; 2,6; 2,1; 2,9; 2,1; 2,9; 2,0; 2,1; 1,6; 1,2; 2,2; 3,0; 2,1.	2,10	0,31	0,339	0,230	3
5	250; S=	: « », - : -10-20/630; - : - 630 ; : (3 70); L=45 .					
	(Zi)	2,1; 2,0; 1,6; 1,4; 1,7; 1,6; 2,0; 2,0; 1,5; 1,7; 2,0; 2,1; 1,4; 1,2; 1,3; 1,3; 2,0; 1,6; 1,3; 1,6; 1,5; 1,2; 1,6; 1,8; 2,1; 2,0.	1,6	0,09	0,313	0,195	2,1
6	: L=43 .	: « », - : 10-20/630- 2; - -1000, S=1000 ; : (3 70);					
		1,8; 1,7; 1,1; 1,3; 1,6; 1,0; 1,7; 1,3; 1,3; 1,8; 1,1; 1,2; 1,3; 1,3; 1,7; 1,6; 1,1; 1,6; 1,3; 1,6; 1,6; 1,4; 1,3; 1,1; 1,0; 1,8.	1,4	0,06	0,263	0,187	1,8
7	: L=78 .	: « », - : 10-20/630- 2; - -1000, S=1000 ; : (3 70);	1,07	0,06	0,256	0,239	1,4
	(Zi)	1,4; 1,3; 1,1; 1,0; 1,2; 1,2; 1,3; 1,1; 1,3; 0,6; 0,7; 1,4; 1,3; 1,3; 0,9; 1,1; 0,6; 1,2; 0,8; 1,2; 0,9; 0,8; 0,7; 1,0.	1,07	0,00	0,200	0,239	1,1
8	:	: « », - : /TEL1020/1000;250; S=250 ; : (3 70);					
	L=150		2,33	0,38	0,618	0,265	3,1
	(Zi)	2,6; 3,1; 3,0; 2,4; 2,5; 3,0; 2,3; 1,5; 2,1; 3,0; 2,4; 1,2; 2,3; 1,2; 3,1; 1,2; 2,7; 2,5; 2,9; 2,0; 3,0; 2,7; 2,9; 1,3; 1,7; 3,1.	2,33	0,38	0,018	0,203	3,1
9		: « », - : -10-12,5/630; - :					
		; S=250 ; : (3 70); L=320 . 1,6; 2,1; 1,3; 2,2; 1,8; 1,9; 1,4; 1,4; 2,0; 1,8; 1,6; 1,0; 1,8; 1,1; 2,0; 1,5; 2,2; 1,3; 1,7; 2,2; 1,6; 2,2; 1,1; 1,2; 1,3; 1,7.	1,27	0,29	0,543	0,43	2,2
10	: -2	« », - : /TEL-10-20/1000; - 250; S=250 ; : (3 70);					
	L=320	•	1,81	0,11	0,34	0,18	2,2
	(Zi)	1,4; 2,2; 2,1; 1,5; 1,6; 2,1; 1,2; 1,6; 1,9; 1,9; 2,1; 2,2; 1,9; 1,2; 1,8; 1,7; 2,1; 1,9; 1,2; 1,7; 1,8; 1,4; 1,4; 1,8; 2,2; 1,3.					

2.3.1.

2.18

2.18 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	1 4	186,8	4,3	61	83	0,045	
2	2 5	134,6	3,7	59	83	0,035	
3	3 6	209,4	5,8	53	77	0,025	

2.19 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	1 4	133,9	4,5	61	86	0,03	
2	2 5	106,4	5,3	58	80	0,04	
3	3 6	165,7	4,6	51	70	0,04	

2.18 2.19 ,

(

.

2.3.2.

2.20 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	1 3	22,1	7,8	61	86	0,03	
2	1 2	56,4	1,07	67	90	0,045	

2.20

3	2 3	11,3	0,09	60	84	0,03	
4	4 5	154,7	3,7	52	74	0,04	
5	5 6	75,1	1,1	51	75	0,03	
6	4 6	206,7	4,5	53	79	0,03	

2.21 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	$P\{$ $^{2}\}$	
1	1 3	90,9	2,8	61	86	0,03	
2	1 2	45,4	1,7	67	90	0,045	
3	2 3	57,3	1,3	60	84	0,03	
4	4 5	125	2,2	52	74	0,04	
5	5 6	60,9	0,5	51	75	0,03	
6	4 6	174,9	2,7	53	79	0,03	

2.20 2.21.

2.20 2.21

2.3.3.

2.21 2.23

2.22 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}		
1	4 7	162,7	2,9	52	76	0,03		
2	8 2	196,7	4,2	63	48	0,03	_	
3	9 3	148,4	4,1	52	74	0,04		

2.23 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}			
1	8 9	167	0,4	50	75	0,028			

2.3.4.

.

.

2.24

2.24 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}		
1	1 11	37,2	0,07	61	44	0,95		
2	1 12	36,5	0,3	60	43	0,95		
3	1 13	31,1	1,2	59	42	0,95		
4	11 12	0,00	0,2	53	36	0,96		
5	12 13	0,9	1,4	52	37	0,94		

2.24 ,

2.3.5.

(),

,

2.25 2.26.

2.25 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	. 2.16 (4) . 2.17 (4)	61,1	1,7	54	73	0,048	
2	. 2.16 (5)	54,6	2,6	50	72	0,038	
3	. 2.16 (6) . 2.17 (6)	33,8	2,8	51	70	0,049	

2.26 -

		$t_{\overline{X}}$	$t_{\overline{S}}$	r	2	P{ 2}	
1	. 2.16 (1) . 2.17 (1)	57,6	2,5	69	94	0,04	
2	. 2.16 (2) . 2.17 (2)	66,7	1,9	68	92	0,038	
3	. 2.16 (3) . 2.17 (3)	12,1	0,6	53	74	0,04	

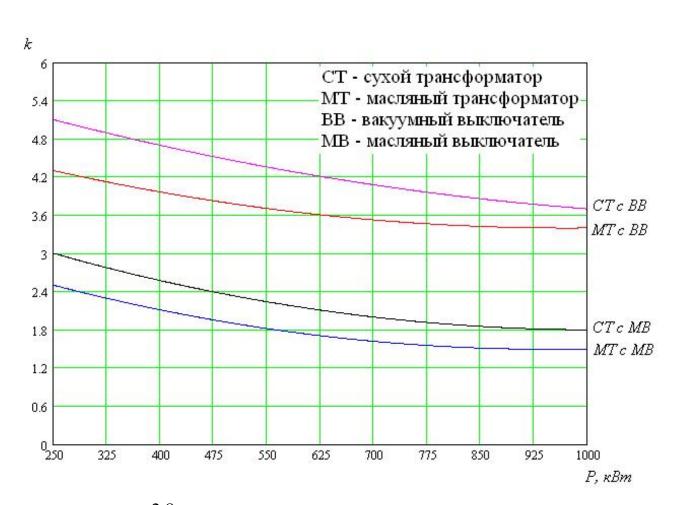
2.2.6.

2.27 2.28

2.27 -

				2	.16	
	1	2	3	4	5	6
S _m ⁺	3,4	3,45	3,1	3,15	3,2	3,1
< _m	1,6	1,52	1,15	1,62	1,37	1,21
S _m , < _m	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>
	-	-	-	-	-	-
\mathbf{Z}_{\max}	4,3	3,6	3,4	2,5	1,7	1,5

2.28 - (


		2.17							
	1	2	3	4	5	6			
S _m ⁺	3,65	3,45	3,2	3,23	3,15	3,1			
< _m	1,16	1,14	1,36	1,46	1,59	1,52			
$S_m^+, <_m$	<m<sm< th=""><th><m<sm< th=""><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th>< m < S m</th></m<sm<></th></m<sm<>	<m<sm< th=""><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th><m<s<sub>m⁺</m<s<sub></th><th>< m < S m</th></m<sm<>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	<m<s<sub>m⁺</m<s<sub>	< m < S m			
	-	-	-	-	-	-			
\mathbf{Z}_{\max}	5,1	4,2	3,7	3,0	2,1	1,8			

2.16 2.17,

•

2.8

, , ,

2.8 -

2.4.

5

1			
			,
2			
3		1,5-2	,
		,	
4			
	,		

, 2500

2500 , , ,

6

3.

: - -

- - ».

3.1.

,

,

-

,

; , ,

[4, 12, 67].). 2,5 25 [24]. 1,5 - 2

. , [67]

•

, ,

100 [51].

.

2500 [24, 55, 67]. 15 2500 60 ÷ 150 [24, 39, 49],), **>>** 2500 2500

18 [51].

()

,

,

· :

-- 10%

);

- 5 ÷ 25

;

-

MatLab,

,

Electronics Workbench V5.12

[35].

3.2.

,

• -

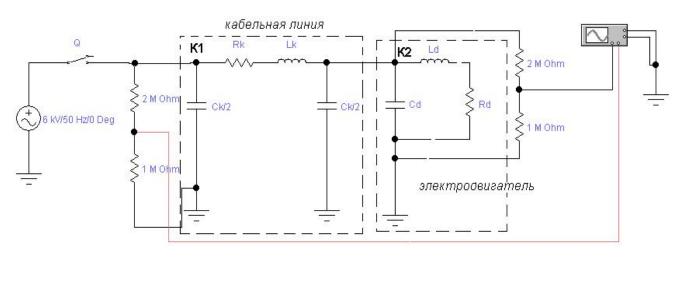
•

" _ _ _ _ _ _ _ _ _

, 3.1.

:

• ;


• Q;

• -

:

• ;

•

3.1 - " – –

,

, 3.

,

, 1, , 2.

50 6

 $50 \div 240$ 2 $0,4 \div 0,58$ 1 ,

 $0,1 \div 0,3$ / .

Q.

[49]

,

3.2

-14-29-6

500 10 .

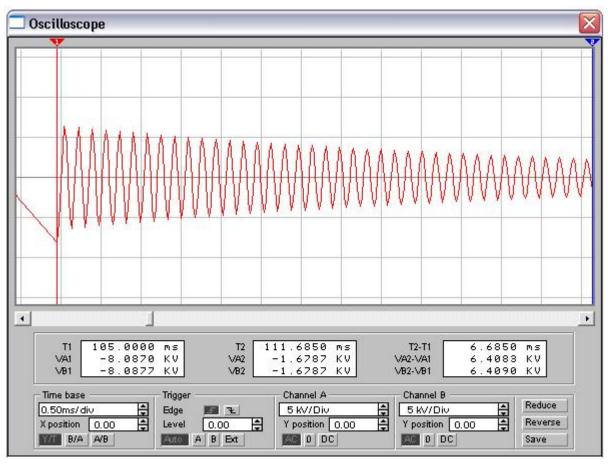
1 2, , , , , 10

,

1, 2.

: =500 , L =30 , =0.018

R = 10 .


(. . 3.2)

1 (VA1, VB1) 2

(VA2, VB2), VA1, VA2 – 2, VB1 V 2 – 1. 1

, 1 2 ,

 $k_{\text{max}} = \frac{U_{\text{max}}(t) \times 3}{U} = \frac{8.087 \times 3}{6} = 4.04.$ (3.1)

3.2 - 14-29-6 l = 10

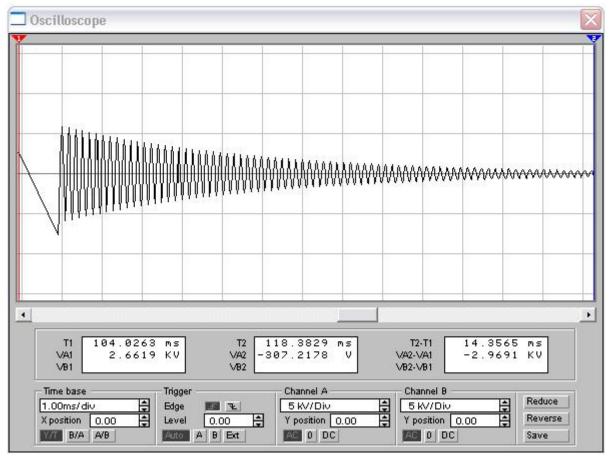
1 2 , « 2- 1» -

1 2.

30 27 (_{max}=4,5).

10%.

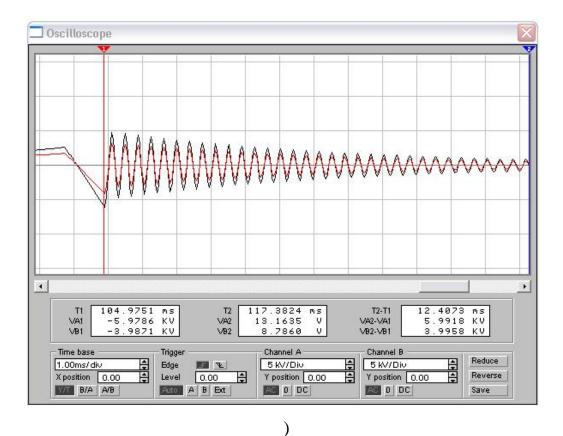
:


-5,53 ; -18 ; -428,5 / .

```
(\max=4,8)
                                                                                                                    [39]
                                                                        . . 3.3).
                                                                    (
       -4.0·10<sup>4</sup>
       -3.2·10<sup>4</sup>
        -2.4·10<sup>4</sup>
       -1.6 \cdot 10^4
        -0.8.104
Uн(t), В
       -0.8 \cdot 10^4
       -1.6·10<sup>4</sup>
       -3.2·10<sup>4</sup>
       -4.0·10<sup>4</sup>
                3.3 -
                                                                                                               -14-29-6
                                                                                   5,66 .
                                                               0 ; 2 –
             1 –
                                                                                                                          50 .
                                   3.4
                                                                     50
                                  10
                                                                           )
                                                                                  14
                                                                                                                         10
                                                 [49].
                                                           13
                                                                                                   . 3.5),
                                                               (
                       100
```

1, - $_{\text{max}} = 1,99$; 2, , - $_{\text{max}} = 3$.

200 : 1


$$_{max}$$
 =1,05; 2 $_{max}$ =2,13, 10 100

3.4 -

14-29-6 l = 10

15 2,6 1 =100 ; 13 2,5 1 =200 . 3.1 3.2

Oscilloscope 1 102.0000 ms 4.2594 KV 2.1304 KV 128.2427 ms -103.4046 V T2 T2-T1 26.2427 ms -4.3628 KV -103.4046 -51.7276 VA2-VA1 VA1 VA2 VB1 VB2 VB2-VB1 1821 Time base Channel A Channel B Reduce 5 KV/Div 2.00ms/div Edge 5 kV/Div 1 P Reverse X position 0.00 Level 0.00 Y position 0.00 Y position 0.00 W/T B/A A/B Auto A B Edt AC D DC AC D DC Save

3.5 - (VB - 1) l = 100 ; l = 200 .

)

3.1 -

(1)

			max	f,
-14-29-6 =500	(3 95+1 25)	10	4,0	5,53
-14-29-6 =500	(3 95+1 25)	100	1,99	2,6
-14-29-6 =500	(3 95+1 25)	200	1,05	2,5
-15-39-6 =1250	(3 95+1 25)	10	3,52	8,6
-15-39-6 =1250	(3 95+1 25)	100	1,4	7,2
-15-39-6 =1250	(3 95+1 25)	200	0,85	6,5
2-17-57-6 =2500	(3 120+1 35)	10	2,2	2,1
2-17-57-6 =2500	(3 120+1 35)	100	0,9	1,5
2-17-57-6 =2500	(3 120+1 35)	200	0,35	1,22
-90/77 =500	(3 95+1 25)	10	3,9	5,2
-90/77 =500	(3 95+1 25)	100	1,54	3,0
-90/77 =500	(3 95+1 25)	200	0,8	2,7
=2500	(3 120)	10	2,7	1,96
=2500	(3 120)	100	1,0	1,84
=2500	(3 120)	200	0,58	1,6

3.2 -

(2)

			max	f ,
-14-29-6 =500	(3 95+1 25)	10	4,0	5,53
-14-29-6 =500	(3 95+1 25)	100	3,0	2,6
-14-29-6 =500	(3 95+1 25)	200	2,13	2,5
-15-39-6 =1250	(3 95+1 25)	10	3,52	8,6
-15-39-6 =1250	(3 95+1 25)	100	1,9	7,2
-15-39-6 =1250	(3 95+1 25)	200	1,58	6,5

3.2

2-17-57-6 =2500	(3 120+1 35)	10	2,22	2,1
2-17-57-6 =2500	(3 120+1 35)	100	1,3	1,5
2-17-57-6 =2500	(3 120+1 35)	200	1,0	1,22
-90/77 =500	(3 95+1 25)	10	3,9	5,2
-90/77 =500	(3 95+1 25)	100	2,06	3,0
-90/77 =500	(3 95+1 25)	200	1,4	2,7
=2500	(3 120)	10	2,7	1,96
=2500	(3 120)	100	1,54	1,84
=2500	(3 120)	200	1,3	1,6

:

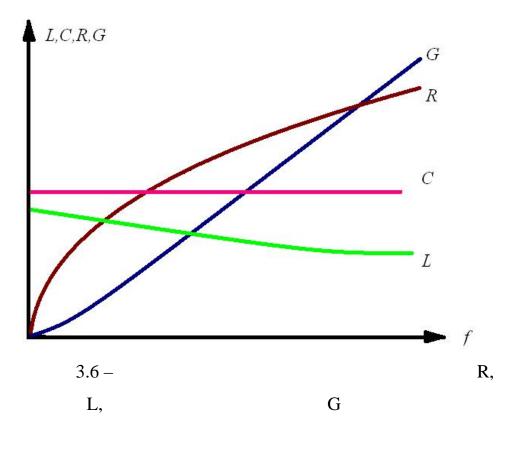
•

;

,

;

, 2500


3.3.

50 5,9 500 0,059 μ μ $X_a < X$.

, . . .

•

3.6.

)

(r R) l,

$$C = \frac{2f \vee \vee_0 l}{\ln \frac{R}{r}},\tag{3.2}$$

V - ;

 V_0 - .

V .

V

[65],

 $r = \frac{l}{u} \sqrt{\frac{f \cdot f \cdot \sim_0 \cdot \sim}{\chi}}, \qquad (3.3)$

r- , ;

l- , ;

 $_{0} = 4f \cdot 10^{-7} -$, / ;

~ -

- , / ($x = 5.8 \cdot 10^{-7}$ /);

 $u = 2f \cdot R - \qquad , \quad .$

:

 $\frac{r}{r_0} = \frac{s}{u} \sqrt{f \cdot f \cdot r_0 \cdot r_0}, \qquad (3.4)$

 $r_0 = \frac{1}{\mathbf{x} \cdot f \cdot R^2} - \tag{,}$

R- , .

3.7

, ,

•

3x120 мм² 3x150 мм²

 1.10^5 f, Γ ц

 $k_{50} = \frac{r(f)}{r(50)},$

3.8. 50

100 , 44,7

7, OM/KM

90

3x25 MM²

70

60

3x35 MM²

40

3x70 MM²

2x70 MM²

3x95 MM²

3.7

5 · 10⁴

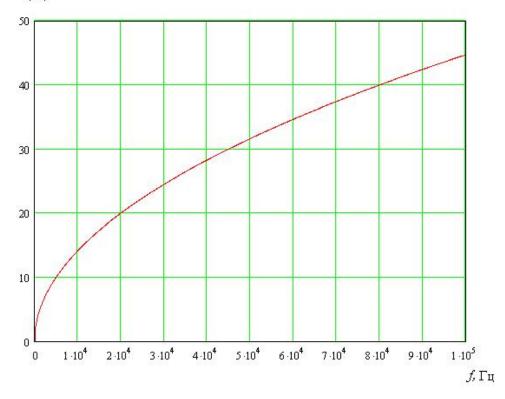
6·10⁴

7 - 104

8 - 104

9·10⁴

3·10⁴


4.104

1.104

2·10⁴

3.7 -

 $k(f) = \frac{r(f)}{r(50)}$

3.8 -

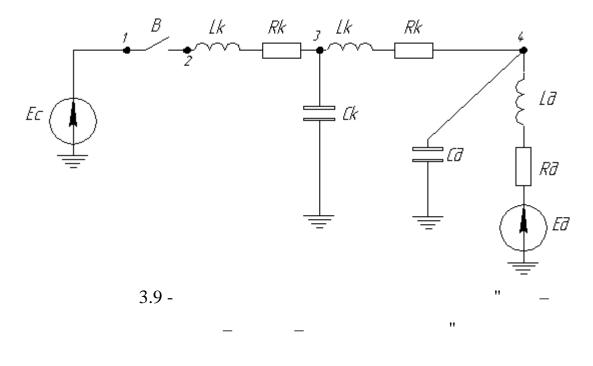
,

,

(. . 3.9), [7].

.

, 120 - 150 .

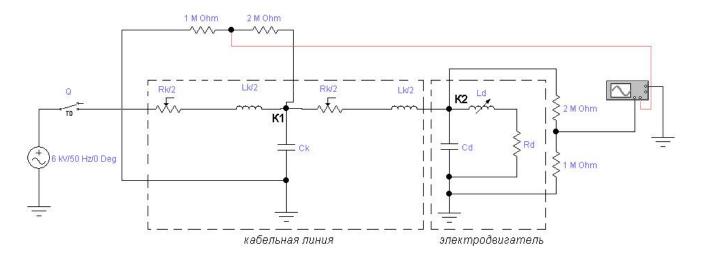

,

 $(x = \check{S}L)$

,

" -R -L ".

,



. [49]

. 10 - L = 30 , 100 , 10

3.10.

Q, - 2,5 6 .

3.10 -**

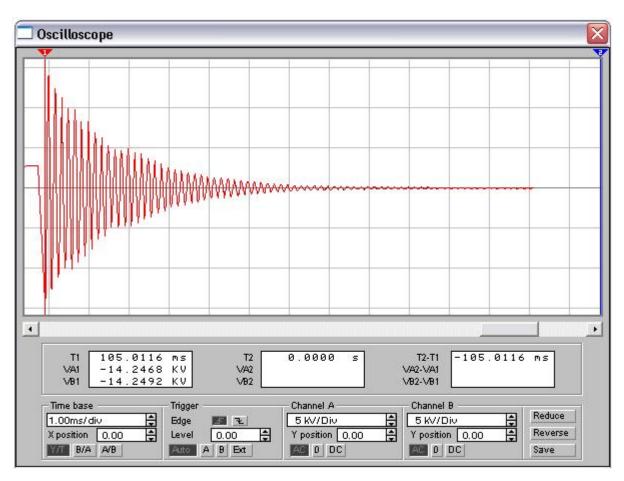
3.11

-14-29-6 500 10 . 1 2,

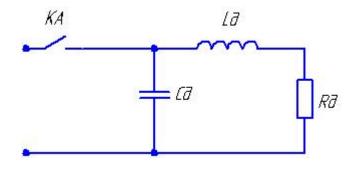
10

2.

1, , L =30÷10 =0,018 =500


, R =10

 $_{\text{max}} = 7,1.$


40 $(_{max}=6,5).$ 39

10%.

- 13 -8,5 ; *−* 1152,7 / .

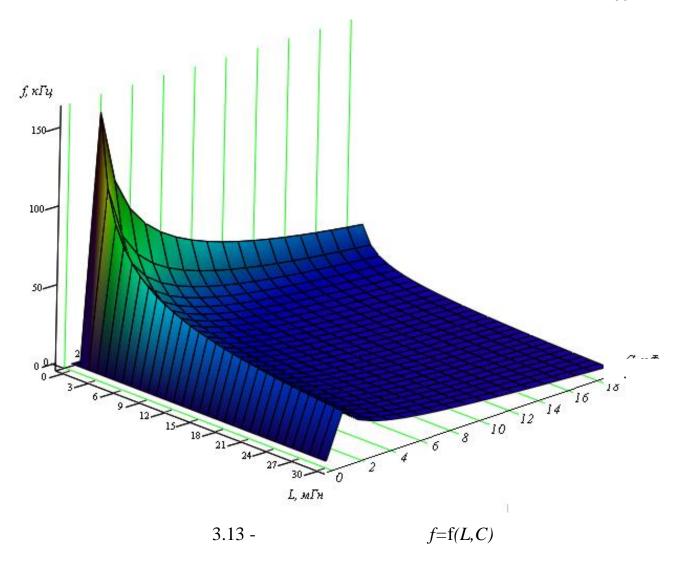
3.11 - -14-29-6 l = 10

3.12 - "

, LC

 $f = \frac{1}{2f\sqrt{LC}}. (3.5)$

(


120 ,

Mathcad 2001 3-

. 3.13.

35 18 ,

L C

[75]

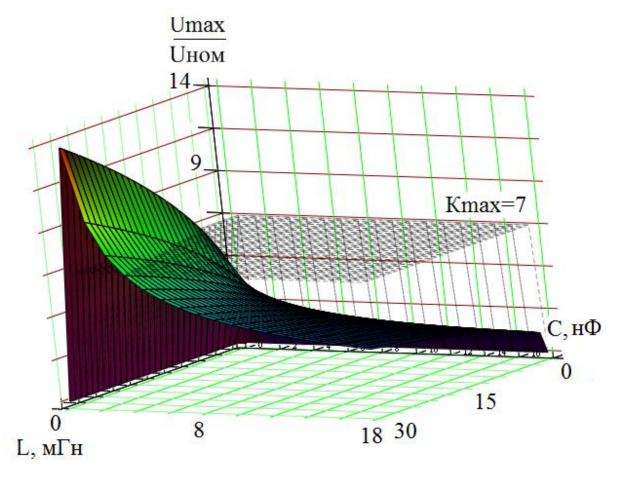
•

 $U_{\text{max}} = \sqrt{U_{\text{max}}^2 + \frac{L}{C} i_0^2} , \qquad (3.7)$

 i_0 - , ;

 U_{max} - , .

3.14


L C, (6.5 - 7)U.

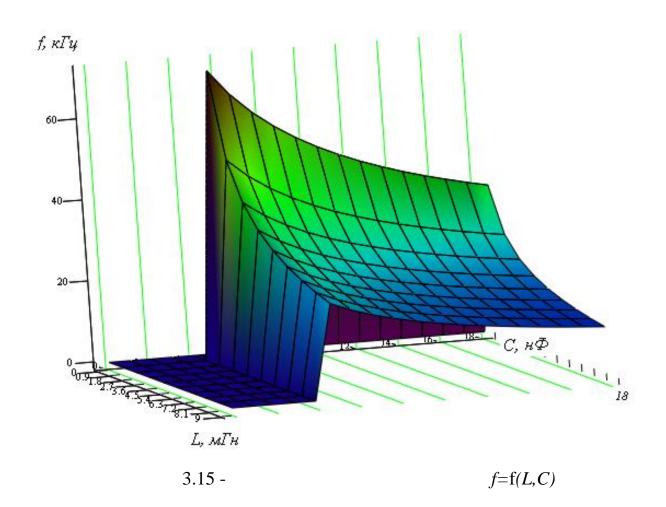
(2,5-6,5)U,

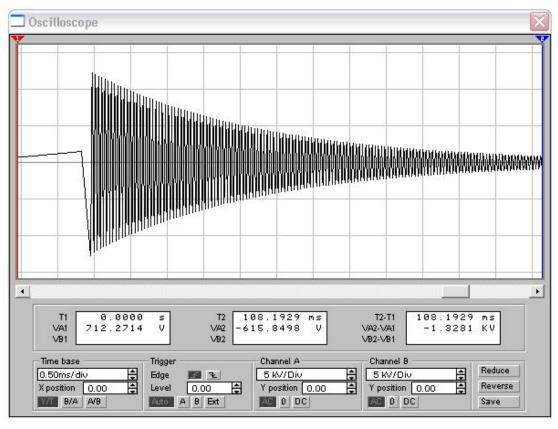
L 0-9 , -5

- 18 **,**

7.

3.14 - Umax=f(L, C)


3.15


. , 76 L 5

-14-29-6

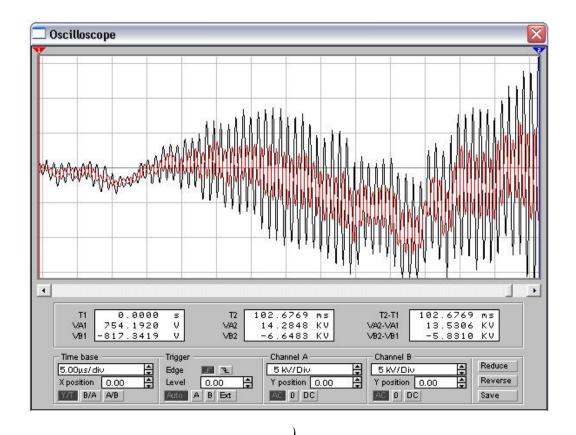
10

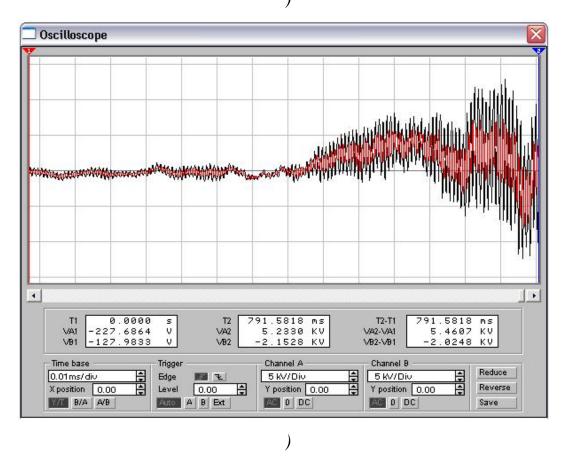
3.16. -36 , -5,8.

3.16 - L=11 , =5 , l = 10 .3.17),

10 .

2


l = 100 - max = 8, l = 200 - max = 7,6, 90,9


1,

4,5 U , -3,8 U .

,

3.3 3.4

3.17 - (VA - 2) l = 100 ;) l = 200 .

(1)

		,	max	f ,
-14-29-6 =500	(3 95+1 25)	10	7,1	36
-14-29-6 =500	(3 95+1 25)	100	4,5	91
-14-29-6 =500	(3 95+1 25)	200	3,8	91
-15-39-6 =1250	(3 95+1 25)	10	4,6	27
-15-39-6 =1250	(3 95+1 25)	100	3,1	42
-15-39-6 =1250	(3 95+1 25)	200	1,8	41
2-17-57-6 =2500	(3 120+1 35)	10	4,2	14
2-17-57-6 =2500	(3 120+1 35)	100	2,0	8
2-17-57-6 =2500	(3 120+1 35)	200	1,7	7
-90/77 =500	(3 95+1 25)	10	6,6	34
-90/77 =500	(3 95+1 25)	100	4,0	78
-90/77 =500	(3 95+1 25)	200	2,9	79
=2500	(3 120)	10	4,0	12,6
=2500	(3 120)	100	2,0	7,5
=2500	(3 120)	200	1,9	7

3.4

(2)

		,	max	f ,
-14-29-6 =500	(3 95+1 25)	10	7,4	65
-14-29-6 =500	(3 95+1 25)	100	8	91
-14-29-6 =500	(3 95+1 25)	200	7,6	91
-15-39-6 =1250	(3 95+1 25)	10	4,6	27

3.4

-15-39-6 =1250	(3 95+1 25)	100	5,0	42
-15-39-6 =1250	(3 95+1 25)	200	4,8	41
2-17-57-6 =2500	(3 120+1 35)	10	4,2	14
2-17-57-6 =2500	(3 120+1 35)	100	3,7	8
2-17-57-6 =2500	(3 120+1 35)	200	3,4	7
-90/77 =500	(3 95+1 25)	10	6,7	34
-90/77 =500	(3 95+1 25)	100	6,8	78
-90/77 =500	(3 95+1 25)	200	6,7	79
=2500	(3 120)	10	4,0	12,6
=2500	(3 120)	100	3,3	7,5
=2500	(3 120)	200	3,0	7

:

(1), 2

2500 ;

•

• 2500

25

3.4.

1. 1 500 10 100 , 1,6 2. 3. 1 2 . 3.1). 4. 2500 45 " -R -L " **>> «**

2.

5. 2500

4.

. -

6-10 - (

.

4.1.

,

,

. [48]

5 1,8U ,

2,8U .

•

,

,

.

4.1 4.2

45 .

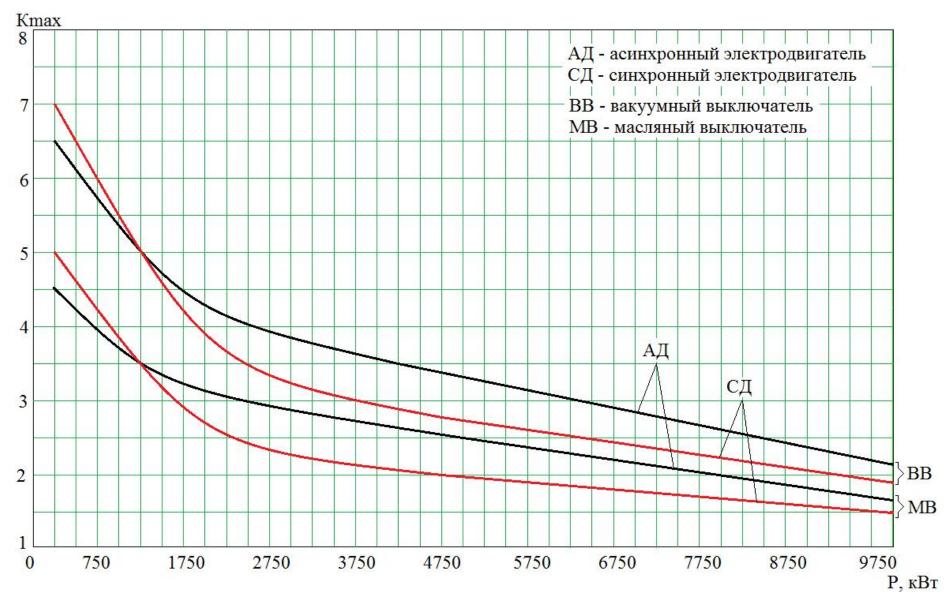
.

,

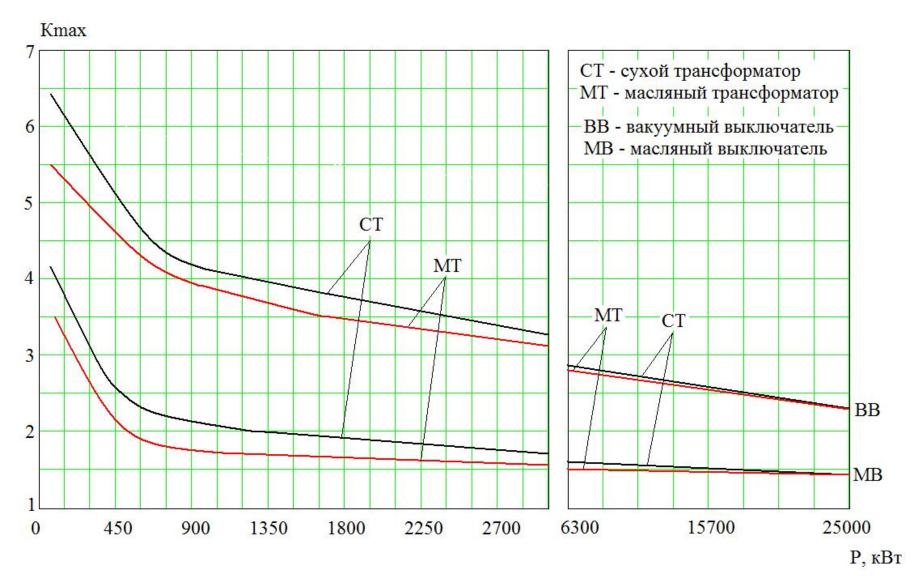
.

(

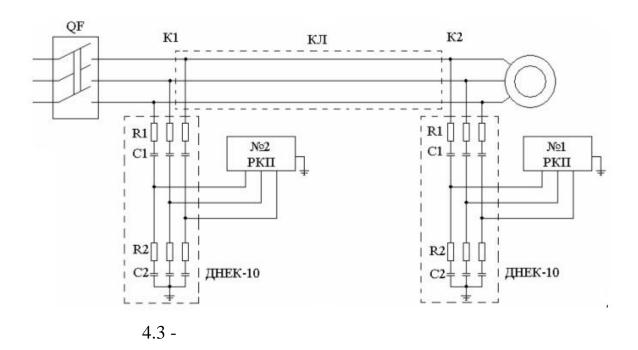
4.3 4.4.

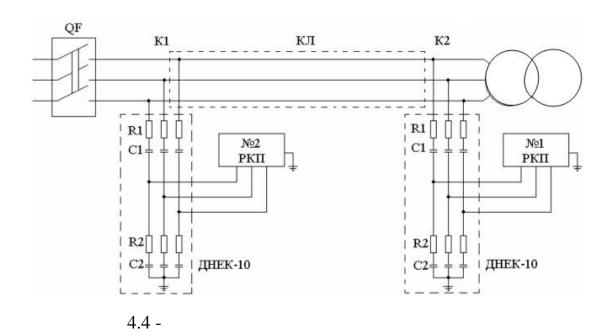

,

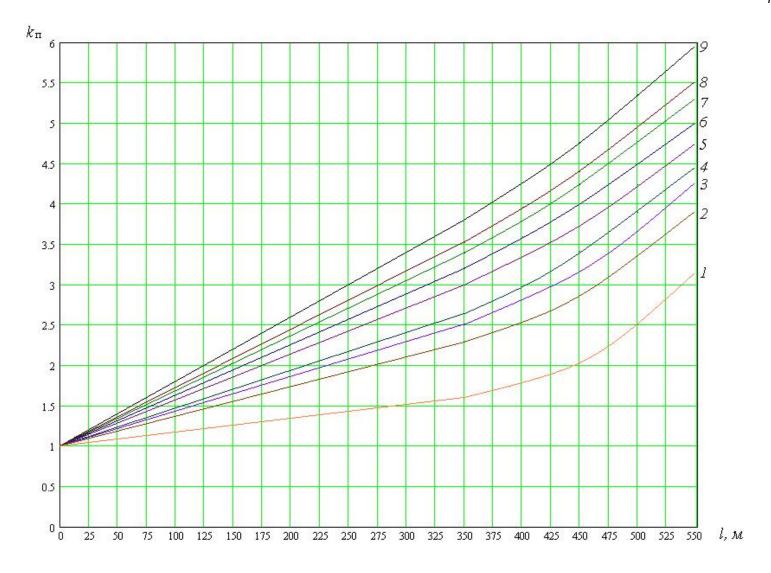
,


,

.


,




4.1 -

4.2 -

4.5 -

1 - 3 25 2, 2 - 3 35 2, 3 - 3 50 2, 4 - 3 70 2, 5 - 3 95 2, 6 - 3 120 2, 7 - 3 150 2, 8 - 3 185 2, 9 - 3 240

4.5

,

,

. : 3 25, 3 35, 3 50, 3 70,

3 95, 3 120, 3 150, 3 185, 3 240 1, 2, 3, 4, 5, 6, 7, 8

9 4.5.

500 2 , k = 1,43,

 $120 ^2.$

4.1.1.

- :

1.

. (2)

 $= \frac{\max_{k}}{k}, \tag{4.1}$

max —

,

4.1, 4.2

; k - ,

4.5

2. (1)

.

$$= \frac{2}{k}, \tag{4.2}$$

3.

(2)

:

$$_{2} = \frac{2.2}{7-k},$$
 (4.3)

4.

(1)

:

$$= \frac{2}{k}. \tag{4.4}$$

4.1.2.

2500 , ,

- :

1.

:

$$_{2} = _{\max}, \qquad (4.5)$$

max -

,

4.1

.

2. (

. (1)

$$= \frac{2}{k}, \tag{4.6}$$

3.

(2) :

$$_{2} = \frac{2.2}{7 - k}, \tag{4.7}$$

4.

(1)

:

$$_{1} = \frac{2}{k}. \tag{4.8}$$

4.1.3.

2500

- :

1.

(2) :

$$= \frac{\max}{k},\tag{4.9}$$

max —

,

4.1, 4.2

2.

(1)

:

$$_{1} = \frac{2}{k}, \tag{4.10}$$

:

3.

$$_{2} = \frac{2.2}{7-k},$$
 (4.11)

4.

:

$$= \frac{2}{k}. \tag{4.12}$$

, 4.1

•

4.1 -

< 5	> 5
2,8	1,8
4,3	2,8
4,3	2,8

4.2.

,

() RC-

.

• .

•

• 1 – 150

•

().

•

,

4.2.1.

2,2 - 2,4.

« - », « -88»

,

,

[74]. 4.6

(-1);

70 n,%

(-2)

10

20

(-3).

10

0

Φ, %
60
50
40
30
2
30
2
3

4.6 - ,

40

30

,

50

60

n

,

40%

65%.

65%, 28% 24%

,

[29, 30].

RC-(1,5 - 1,7)

100 %, ... RC-U,

[51].

3,5 RC-

1,2 [29, 30]. RC-

4.2.2.

RC-6

RC-6

[3, 58]

K_v, RC-

 $775,1*10^{-6}$ 3 $5891*10^{-6}$ 3 , RC-

1,8 5,6 .

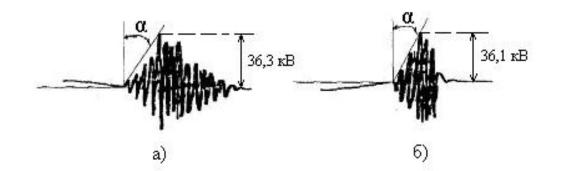
2,4*U .

,

·

4.2.3.

,


(

,

« » « »

- 36,3 36,1 . « »

« », [51].

4.7 -

BB/TEL-10-12,5/630

) _{max}=5,67; f=45 ,) _{max}=5,98; f=67

·

[8]:

 $\frac{du}{dt} = \frac{i_0}{C} \tag{4.13}$

. .

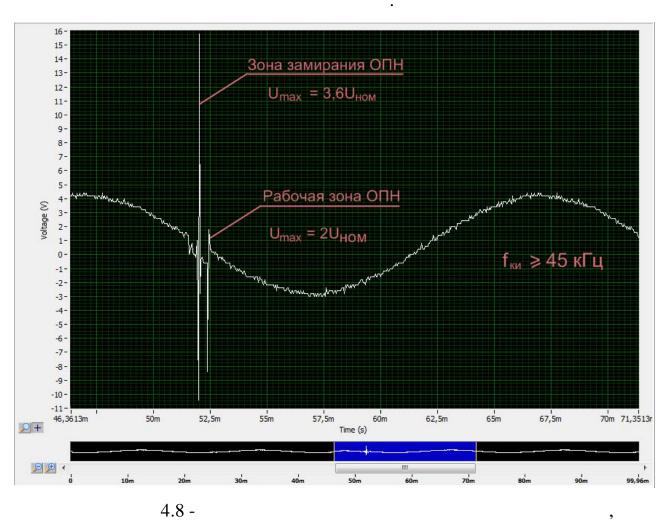
.

, RC-

4.2.4.

» [51, 55].

, « »


, 45 . « »

,

, 8

. 250

2,97U ,

, 2,97U 45

4.2.

RC-

RC- . RC-

RC-

,

,

[43].

, , RC-

3 , , , , ,

=2,33>1,8.

RC- ,

2,33 < 2,8.

4.2 -

1				RC-			-6/6,5-10 2	-	/TEL-6
2				«	*	«	-88»	«	-
3			4,6			2		1,8	
4	,			170	110		80 80	120 80	80
4			25	1/0	110	25	00 00	25	00
5	,		<i>43</i>			43		23	
	Í		_			1,1		1,2	
6			1,5			2,5		2,3	
7									
		45							
8		45 – 120							
						,,		11	
							"		"
				*					
9		-							
		-							

4.3.

250 RC-400 (4.2). 400 400 RC-

4.3.

RC- ,

.

RC- ,

RC- . ,

,

,

15 10

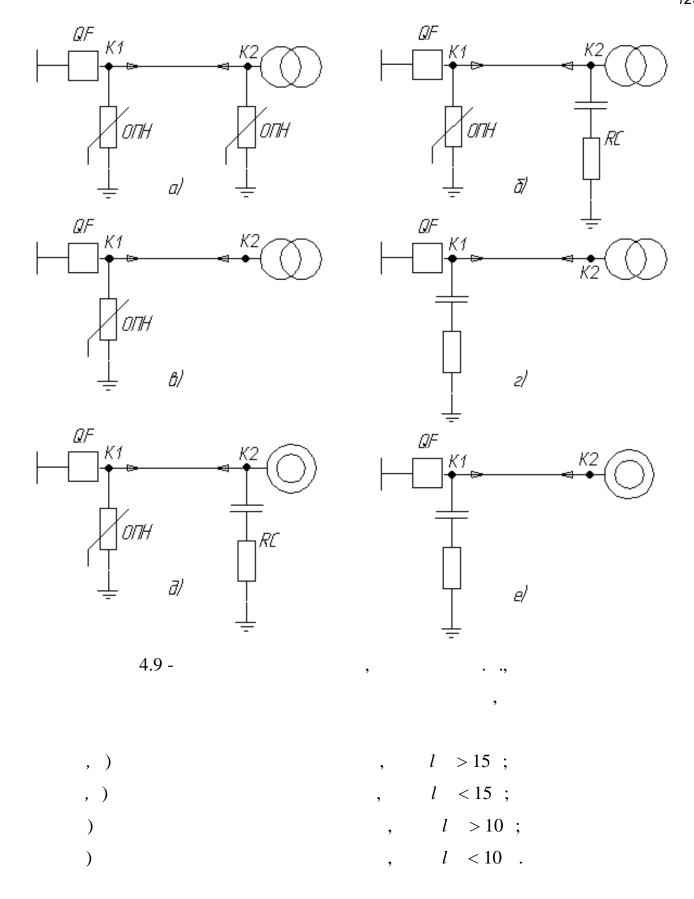
4.3 - ,

,	2880	2650	2000	1600	1250	1160	1000	800	630	500	400	320	250	200
	85	06	100	130	160	200	220	230	250	270	290	330	350	370
	65	70	85	130	170	210	220	230	310	350	1	1	ı	1

,

(),

,

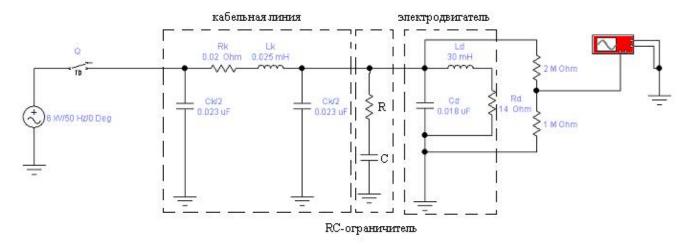

[70].

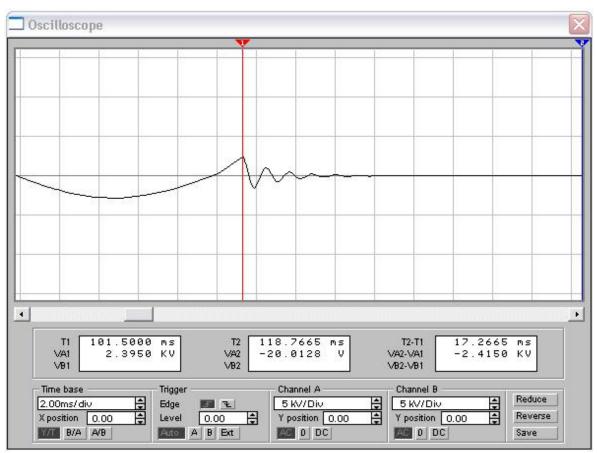
60%

RC-

2 4.9, [55]. 15 -RC-RC-15

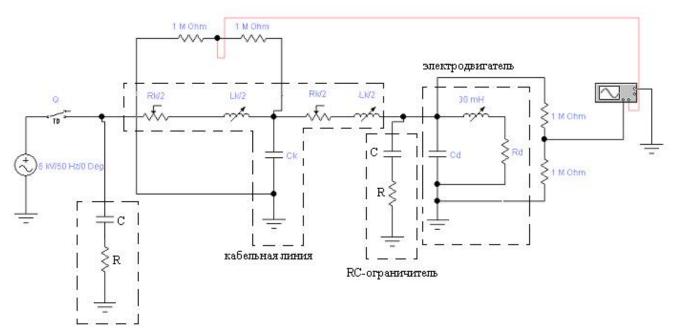
(.4.9 ,).

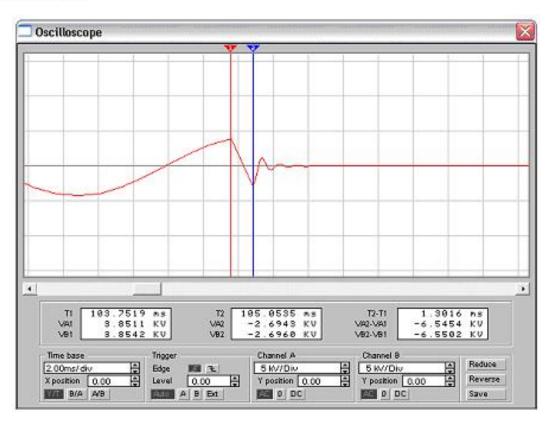

```
124
```


```
10
                                           -RC-
                                    RC-
                     ( .4.9 ).
                 10
                                                             RC-
          ( .4.9 ).
                                                    ( .4.9 , , ,
),
      4.9,
                               6-10
              " -R -
                                                             50%.
                                                            -RC-
                2,25
                                           "( .4.9 )
( . 4.9 )
                                               "( .4.9 )
                                -RC-
             ( .4.9 ),
RC-
                                                             "RC-
           -RC-
o
              "RC-o
                                                    1,5
                                  -RC-
          " -RC-
```

4.4.

RC-

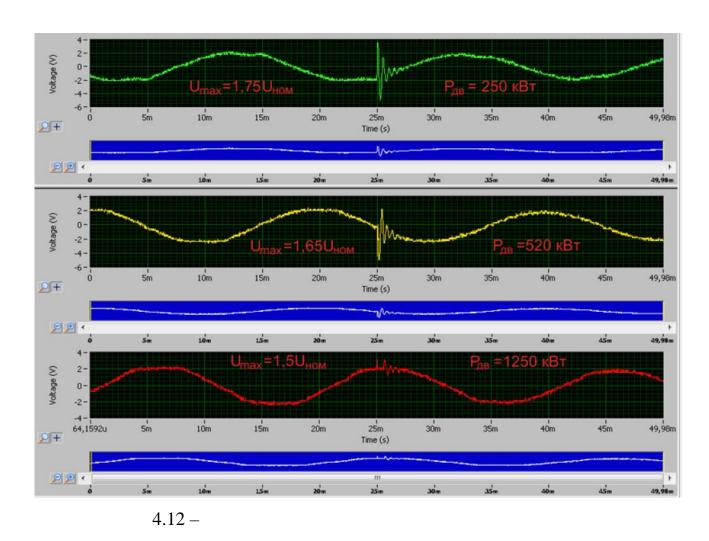

(5) 1,8 U [75]. =2,4-RC- . 500 -14-29-6, [39], RC-: R=75 , =0,25 4.10 -14-29-6 RC-100 RC-1,2U, 1,8U . 3,9 , 3,7 8 (100 2) 4,5 (1). RC-1 2 (. 4.11). 4.11 2, 1,3U ($k_{max} = 3.85*2/6$) 1 2.



4.10 - RC-

-14-29-6

RC-ограничитель


4.11 - RC-

-14-29-6

4.12

250, 520 1250

RC- .

RC-

4.5

1.

, ,

		,					,
3.		,	,			RC-	
	3	,					
4.		, "		",			
	45			,			
5.	RC-						
			,				
6.							RC-
		, RC-					
7.		100		,	•		

,

1. , , , ,	
,	
, : ,	
•	
,	,
2. , , , , , , , , , , , , , , , , , , ,	
,	,
,	
3.	
« - –	»
, 2500	45
,	,
,	
6,5 . 4. ,	

5. -

« – – »

,

,

6. - ,

RC- ,

,

,

```
1.
                      6-35 [ ] / . , .
                            .-2002.-5(17).
      , . //
2.
           [ ]/.
                          //
2001. – 6.
3.
                           ". -2004 .
 1998 – 2003 .// .
4.
                 [ ]/ . . //
       .-2002.- 7.
                    / . .//- .: ,1987.
5.
                                  [ ]/..
6.
      //
               .-1991.- 4. - .6 - 10.
7.
      .-10- ./ . . //- .:
                              , 1999. – 638 .: .
8.
     , 1981. – 168 .
9.
                                       6
```

```
[ ]/...,
                             . – 1992. – 6.
. . //
                                  [ ] / Selzer //
10.Selzer, .
            . – 43964. – 27 . – IEEE Trans., 1972, V.1 A – 8, 6,
 p. 707 – 717.
11. , . .
                                 [ ]/ . . ,
                      //
                                 . – 1984. – 12. – .4-
7.
12.
                            . – 1990. – 152 .: .
13.
                   / . . // .
       . - .: . . - 1975. - 333 .: .
                                                /
14.
        . . //
   . . . – 1998. – 479 .: .
15.
                                      [ ] / . .
                                           - 2003. -
                     //
   10.
```

. - 2002.

16. []/ . . , . . . // . . . -. – 1986. – 11. 17. []/ . . , . . // . *−* 1987. *−* 7. , . . RC-18. [] / . . , . . , . . // . – . – 1989. – 8. 183-74. 19. /- .: -. – 1993. 20. / . . //- .: . – 1962. 21. //- .: . . - 2001. - 1296 ., . 6 (10) 22.

//

[]/ . , .

- 5.

```
23.
                                          // - .-
                     ... - 2002. - 147.
24.
                                               [ ] / .
               //
                                    17
  «
                                                        ». –
        . - 1980. - 29.
25.
                                           . – 1976.
26.
  [ ]/ . . //
                                           . - 2003. - 7.
27.
                              // . .
                               . – 1987. – 368 .: .
28.
                      6, 10
                                                 [ ]/ ..
         , . . // .
                                              '' - 2005.
```

29. (.) // ; .-1986.-80 .: . 30. (.) / ; , 1975. – 85 .: . 31. // . . 76086908. / . . 32. 1970. - 209 . // - .: 33. / . . // 11 ". – 1959. 34. []/ . .

1969. –

9.

//

```
35. , . .
                                 IBM PC.
                        / . . //- .: " - ".-
 Electronics Workbench
2000.-506 ., .
36.
           [ ] / . . , . .
        // . - 1998. - 4.
                                              /
37.
 . . // 3. – 3- ., . – .:
                                         . – 1988.
-728 .
38.
           [ ]/ . . , . .
                                   //
      . – 2003. – 2.
39.
                                  //
-2002.
40. , . .
                                         6-35
                                 //
```

-2006.

```
41. , . .
                                       3 –
    / . . //- .: .-1967.-30 .
220
                          6
42.
     ]/ . . //
                            . – 1983. – 8. – 69-
73.
43.
    , . .
 [ ]/ . . , . . , . . , . .
                                       //
      .-2005.-10.
44.
          / . . //
                                     . – .:
     . - 1980.
45.
     , . .
           / . . , . . //- .: . - 1987. -
143 .
46. , . .
                                    / . .
   , . . // . –
                               . – 1969. – 3. –
  .163 - 141.
                         6 – 35 / . . ,
47. , . .
. . , . . , . . . // - .:
           . – 1989. – 192 .
```

```
48.
                      /
                 , 1991. – 464 .
49.
                                     / . . //
            . – 1986.
                          6 – 35 //
50.
11
                  ". -2003. -35 .
51.
                                     [ ]/..
                                                     //
                                                              :
  "
                                                  -2006. -399
52.
                                        / . .
```

. – 1988. – 102 .: .

. .//- .:

```
53.
       // . . . . . , . .
                              ". – 1977.
54.
               // - .: . - 1970. - 536.: .
55.
                                     [ ] / . .
          //
                   : "
         .-2006.-399.
56.
   [ ] / . . , . . , . .
                                              //
                   . - 1977. - 11. - . 41 - 44.
57.
         [ ] / . . , . . , . . , . . 
                                 . – 1990. – 5. – .62
       , . . //
```

-65.

```
58.
                       [ ]/...,...
                                                        //
              .-2000.- 7.
59.
                          6
        [
             ] / . .
           . – 1970. – 15. – .24 –28.
60.
                       / . . //- .:
                                                  . – 1980.
61.
                                                     / . .
           /\!/- .: " ". -1976. -175 .
62.
                    // - .: . - 1985.
63.
                                                         /
                                    // – 3-
                    , 1989. – 768 .: .
     .:
64.
                    6 (10)
  [ ]/ .
                    //
                                         . – 2002. – 3.
```

```
65.
                               : 3- .
    . 3. – 4- . / . . , . .
      //- :: . -2004. -377 :: .
66.
       : . ./ . , . , .
   . . . //- .:
                          , 1989. – 555 .: .
67.
[ ] / . , . // . "
        ". -2000 .
68.
            [ ] / . .
              . //
                       . - 2001. - 3.
69.
         / . . //- .: . - 1985. - 160 .
70.
        [ ]/ ..
                      //
2003. – 12.
71.
```

```
//– 1984. – . . 6 (152), .12 – 16.
72.
                                   [ ]/ . .
                                                        . - 1970.
                        //
      9 - .109 - 130.
73.
                  .) /
            . – 1997. – 50 .: .
74.
                                : 4 . . 3.
                                     //
                          . ( . . . . ). – 8-
                           .-2002.-964.
75.
                  [
                     ]/ . . , . .
                           . – 1987. – 7.
  //
76.
                                                       // Elektric
  power Applications. – 1979. – 4. – .125 – 131.
```

77.**Headley, A.** Meeting system requirements with modern switchgear / .

Headley // Proceedings IEEE Symp. on trends in modern switchgear design 3,3-150 kV. - Newcastle. - 1984. - pp.9.1-9.5.

78. Murano, M.

```
/ . Murano // . — 44499. . 23. IEE Trans., 1977, J. PAS — 96. -
1. - .143 — 149.
```

79.**Ohkawa, M.** Switching surge in vacuum. Switching devices and countermeasures / . Ohkawa, . Koike // Toschiba Rev. Int. Ed., 1976. N. 105, p.18 – 25.

80.

. / . . // - :

« », 20. – 464 .