0,38 6-10

05.09.03 -

:

- 2006

	4
1.	9
1.1.	9
1.2.	12
1.3.	24
	1
2.	
2.1.	
2.2.	
2.3.	
	2
3.	
	51
3.1.	MCT 31 Harmonic calculation software51
3.2.	MATLAB/Simulink57
	371
4.	
4.1.	73
4.2.	9
4.3.	
4.4.	
	495
5.	

•

3
 2

•

()

. , .

,

:

:

,

•

[1]. .

;

,

- ;

5

- •
- , . . .
- ,
- . .

() .

. .

- « ». -
- . . , , , , ()
- ,
- · -
- ·

: 13109-97 , . : , 0,38 6-10

/

•

, ,

,

,

,

,

;

;

;

;

,

;

T_{hd}. sφ

6

,

,

:

 $- T_{hd}$,

: 0,38 6-10

,

:

; ,

; () 6

: 0,4

() , 1-, ; RC-, 6 -

,

RC 6,6-0,25/50,

_ 46 ; , RC-• , 10 • R. , 10-_ 2006 . ~ **»** , , _ 2005 447000 -•• - 1646155 - 1199155 . • -

8

,4 , , __________, _______, ______, _____,

, :

_

_

_

-

,

_

1.

13109-97,

,

•

•

.

,

•

1.1.

•

1.

:

,

,

. 2.

3.

4.

,

10

-

.

,

_

- , ... 5.
- , . , , ,
- . 6.
- . . 7.
- · ,
- 8. , . ,
 - ,
 - , , , , , _
 - -
 - --
 - · · ·

11 , · · · -• • , , , • , . , -, , • : , , • , ,

,

• •

·

,

n- .

1.2.

,

1 1999

13109-97 «

, , , , , , , . 1.1.

« », :

U (t) = U (t) - i(t) $\tilde{N} Z$, (1.1)

-

:
$$U$$
 (t) -
; U (t) -
; Z -

:

"

$$U$$
 (t) = U (t) - i(t) $\tilde{N} Z$, (1.1)

;

() (,) - , , ().

;

,

,

50 150 ,

,

:

_

750

,

,

,

,

. 1.2

$$K_{\rm U} = 10\%$$

10...15 %);

- ;
- ; •
 - ,

: $\Delta = U^2 \omega C t g \delta$.

(1.2)

. $x_{C} = \frac{1}{wC} = \frac{1}{2ff \bullet C} = \frac{1}{2fkf_{o} \bullet C},$ (1.3) : f - , k - ; - ;

, , .

, (, 80 - 85 %

);

16

, (1, 4, 7 . .),

_ ,

,

(t°) , t° ,

, , ;

,

-

(2-,4-..)

3-, • (), , : , , ; , , ~ », ; () – , () (. . _). , , (). 2.

18

: , (). _ , , (); , 1,1·U 4 0,9·U 40 % 15 %, 0,9·U , 0,8·U ; 15 % 23 % (). , 0,9·U 1 % 3...7 %, . . 13109-97 , $Uy = \pm 6 \%$ $Uy = \pm 10 \%$

3.

3-

•

19

13109-97

85...90 %

.

(

).

-,

,

,

,

,

,

;

,

,

,

;

,

,

,

,

:

2...4 %,

•

•

•

 $K_{2U} =$ 10...15 %,

20

-

_

:

21

80 %

,

•

13109-97

,

 $\begin{array}{ccc} (K_{2U}) & (K_{0U}) \\ 2 \% & 4 \%. \\ & 13109-97 \end{array}$

,

,

,

,

4.

,

,

,

:

:

•

_

•

- ; ;
- . , , , , ,
 - · , .
 - , , , , , ,
 - 8,8

,

- Ut = 29 %.
- (Ut)

,

, (Pt)

,

,

-.

1 %

,

2 %.

, _

15 %

; • -(110 % U) 10

(,) ().

,

(6-10-35),

1.3.

sφ

[10]:

,

$$s \phi = \frac{U_1 I_1 \cos\{_1\}}{U_1 I} = \frac{I_1}{I} \cos\{_1\} = -\cos\{_1\}, \qquad (1.6)$$

)

(

,

:

; µ –

,

[1,2,10].

,

 1.
 .

 2.
 .

 3.
 .

 9.
 .

 4.
 .

 5.
 .

 6.
 .

,

,

:

,

,

,

7.

-

-

• •

•

,

RC-

,

•

1

1.

,

2. , 3.

1

,

•

0,4 - 0,5

/

,

,

•

:

,

_

,

,

,

,

,

, 10 « ». -

-

,

,

2.1.

[11], 11

,

,

,

2.

13109-97

•

-

, _ _

-

;

,

,

, , : 43204,

,

1.

,

2. 43250, - :

;

4. -57, : • : 10

(49-) . : . . (, , ,

- s). • (-, , ,).

, , ,). • : ; -; ; ; ; ; · ; ; -; ; ; ; · · ; ; -

5. « 3.3», -, -

13109-97 , , , . 6. « -1-50 »,

, 13109-97

,

, 10 ;

31

_

,

,

,

,

. 2.1.

•

1. -1 0,4

			,		-
,		1 (. 1.).	. 2. (-
),	. 3 ()	. 4 (
)				-
					_

. 2.2,

,

,

•

,

. 2.2.

_

	50	$-T_{hd}$ (-
) —					
49- (,			
				_	-
0,38		-			
8	%,	-	- 12 %;		-

 T_{hd}

,

5 %, - - 8 %).

-

. 2.3, . 2.4

6-20

34

•

-101	VACON 132CXL4	
-101	=132 I=270	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-110	VACON 110CXL4	
	=110 I=210	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-10/1	VLT 6052	
20/1	27	
	=37	
	I=80	
		□ <u>100</u> 63,4 82,7 78,1 37,2 45,3 46,5 0 0

-101	VACON 132CXL4		٦			
	100					
	=132					
	I=270					
			ļ			
-110	VACON 110CXL4		7			
	110					
	=110					
	I=210					
		0 1 3 5 7 9 11 13 15 17				
1.0.11						
-10/1	VLT 6052					
	=37	8 - 4				
	I 00	6 - 1				
	I=80					
		1 3 5 7 9 11 13 15 17				
			$\left \right $			
			l			
		-		_		-
------	----	----------------------	---------	---------	---------	---------
	-		•	•	•	•
1		U ,	227-230	232-235	227-230	232-235
-101	1	, %	100	100	100	100
-1		T_{hdV} , %	1,6	2,3	2,4	4,7
1		U ,	0	0	0	0
Ι	3	, %	0	0	0	0
		T _{hdV} , %	1,6	2,3	2,4	4,7
		U ,	0	0	4,3	5,1
	5	, %	0	0	1,9	2,2
		T _{hdV} , %	1,6	2,3	2,4	4,7
		U ,	0	0	3,5	9,1
	7	, %	0	0	1,5	3,9
		T _{hdV} , %	1,6	2,3	2,4	4,7
		U ,	0	2,5	0	2,6
	9	, %	0	1,1	0	1,4
		T_{hdV} , %	1,6	2,3	2,4	4,7
		U ,	0	2,3	1,2	5,2
	11	, %	0	1,1	0,5	1,8
		T_{hdV} , %	1,6	2,3	2,4	4,7
		U ,	0	0	0	1,2
	13	, %	0	0	0	0,5
		T_{hdV} , %	1,6	2,3	2,4	4,7
		U ,	0	0	0	0
	15	, %	0	0	0	0
		T_{hdV} , %	1,6	2,3	2,4	4,7
		U,	0	0	0	0
	17	, %	0	0	0	0
		T _{hdV} , %	1,6	2,3	2,4	4,7

		-	-		_	
	-		•	•	•	•
2		U,	224-227	228-231	225-229	230-234
-102	1	, %	100	100	100	100
-1		T_{hdV} , %	2,5	4,6	2,7	5,1
1		U ,	0	0	0	0
Ι	3	, %	0	0	0	0
		T_{hdV} , %	2,5	4,6	2,7	5,1
		U ,	4,6	5,6	2,9	5,9
	5	, %	2,0	2,4	4,8	2,8
		T_{hdV} , %	2,5	4,6	2,7	5,1
		U ,	3,9	7,3	2,9	8,6
	7	, %	1,7	3,2	4,3	3,5
		T_{hdV} , %	2,5	4,6	2,7	5,1
		U ,	0	0	0	0
	9	, %	0	0	0	0
		T_{hdV} , %	2,5	4,6	2,7	5,1
		U,	0	4,5	2,5	5,6
	11	, %	0	2,0	1,1	2,2
		T_{hdV} , %	2,5	4,6	2,7	5,1
		U,	0	0	0	0
	13	, %	0	0	0	0
		T_{hdV} , %	2,5	4,6	2,7	5,1
		U ,	0	0	0	0
	15	, %	0	0	0	0
		T_{hdV} , %	2,5	4,6	2,7	5,1
		U ,	0	0	0	0
	17	, %	0	0	0	0
		$T_{hdV}, \%$	2,5	4,6	2,7	5,1

		-	—		_	
	-		•	•	•	•
3		U,	230-233	233-236	230-233	233-236
-103	1	, %	100	100	100	100
-1		T_{hdV} , %	2,1	2,4	2,3	4,4
1		U ,	0	0	0	0
II	3	, %	0	0	0	0
		T_{hdV} , %	2,1	2,4	2,3	4,4
		U ,	0	1,8	4,2	4,3
	5	, %	0	0,7	1,8	1,8
		T_{hdV} , %	2,1	2,4	2,3	4,4
		U ,	0	4,6	3,9	7,7
	7	, %	0	1,9	1,7	3,2
		T_{hdV} , %	2,1	2,4	2,3	4,4
		U ,	0	0	0	0
	9	, %	0	0	0	0
		T_{hdV} , %	2,1	2,4	2,3	4,4
		U ,	0	0	0	5,9
	11	, %	0	0	0	2,5
		T_{hdV} , %	2,1	2,4	2,3	4,4
		U ,	0	0	0	0
	13	, %	0	0	0	0
		T_{hdV} , %	2,1	2,4	2,3	4,4
		U ,	0	0	0	0
	15	, %	0	0	0	0
		T_{hdV} , %	2,1	2,4	2,3	4,4
		U ,	0	0	0	0
	17	, %	0	0	0	0
		T_{hdV} , %	2,1	2,4	2,3	4,4

		-	-	-		-
	-		•	•	•	•
4		U,	228-231	231-234	228-231	231-234
-104	1	, %	100	100	100	100
-1		T_{hdV} , %	2,1	2,3	3,5	4,6
2		U,	0	0	0	0
Ι	3	, %	0	0	0	0
		T_{hdV} , %	2,1	2,3	3,5	4,6
		U,	0	4,3	6,4	7,6
	5	, %	0	1,8	2,6	3,5
		T_{hdV} , %	2,1	2,3	3,5	4,6
		U,	0	3,3	3,9	6,5
	7	, %	0	1,5	1,6	2,7
		T_{hdV} , %	2,1	2,3	3,5	4,6
		U ,	0	0	0	0
	9	, %	0	0	0	0
		T_{hdV} , %	2,1	2,3	3,5	4,6
		U ,	0	0	0	3,5
	11	, %	0	0	0	1,3
		T_{hdV} , %	2,1	2,3	3,5	4,6
		U ,	0	0	0	0
	13	, %	0	0	0	0
		T_{hdV} , %	2,1	2,3	3,5	4,6
		U ,	0	0	0	0
	15	, %	0	0	0	0
		T_{hdV} , %	2,1	2,3	3,5	4,6
		U ,	0	0	0	0
	17	, %	0	0	0	0
		T_{hdV} , %	2,1	2,3	3,5	4,6

		-	_		_	
	-		•	•	•	•
5		U,	228-232	231-235	228-232	231-235
-105	1	, %	100	100	100	100
-1		T_{hdV} , %	1,6	2,3	3,7	5,2
2		U ,	0	0	0	0
II	3	, %	0	0	0	0
		T_{hdV} , %	1,6	2,3	3,7	5,2
		U,	0	0	5,9	7,3
	5	, %	0	0	2,5	3,1
		T_{hdV} , %	1,6	2,3	3,7	5,2
		U,	0	0	5,3	10,2
	7	, %	0	0	2,3	4,2
		T_{hdV} , %	1,6	2,3	3,7	5,2
		U ,	0	2,6	0	3,6
	9	, %	0	1,3	0	1,4
		T_{hdV} , %	1,6	2,3	3,7	5,2
		U ,	0	2,3	2,8	8,7
	11	, %	0	1,1	1,3	3,4
		T_{hdV} , %	1,6	2,3	3,7	5,2
		U ,	0	0	2,8	3,9
	13	, %	0	0	1,3	1,3
		T_{hdV} , %	1,6	2,3	3,7	5,2
		U ,	0	0	1,2	1,2
	15	, %	0	0	0,5	0,7
		T_{hdV} , %	1,6	2,3	3,7	5,2
		U ,	0	0	2,5	2,5
	17	, %	0	0	1,1	0,9
		T_{hdV} , %	1,6	2,3	3,7	5,2

			•	•	•	•
6		U,	226-228	230-232	226-228	230-232
-106	1	, %	100	100	100	100
-1		T_{hdV} , %	1,5	2,2	1,6	3,4
1		U,	0	0	0	0
Ι	3	, %	0	0	0	0
		T_{hdV} , %	1,5	2,2	1,6	3,4
		U,	0	2,3	1,7	3,8
	5	, %	0	1,1	1,1	1,6
		T_{hdV} , %	1,5	2,2	1,6	3,4
_		U,	0	2,6	1,2	6,1
	7	, %	0	1,4	0,7	2,6
		T_{hdV} , %	1,5	2,2	1,6	3,4
_		U,	0	0	0	3,0
	9	, %	0	0	0	1,5
		T_{hdV} , %	1,5	2,2	1,6	3,4
		U,	0	0	0	2,5
	11	, %	0	0	0	1,1
		T_{hdV} , %	1,5	2,2	1,6	3,4
		U,	0	0	0	0
	13	, %	0	0	0	0
		T_{hdV} , %	1,5	2,2	1,6	3,4
		U,	0	0	0	0
	15	, %	0	0	0	0
		T_{hdV} , %	1,5	2,2	1,6	3,4
		U,	0	0	0	0
	17	, %	0	0	0	0
		T_{hdV} , %	1,5	2,2	1,6	3,4

3.6

		-	_		_	
	-		•	•	•	•
7		U,	230-233	233-236	230-233	233-236
-107	1	, %	100	100	100	100
-1		T_{hdV} , %	0,9	1,1	1,8	4,2
1		U ,	0	0	0	0
II	3	, %	0	0	0	0
		T_{hdV} , %	0,9	1,1	1,8	4,2
		U ,	0	0	2,5	3,6
	5	, %	0	0	1,1	1,5
		T_{hdV} , %	0,9	1,1	1,8	4,2
		U ,	0	1,8	2,8	5,7
	7	, %	0	0,7	1,2	2,4
		T_{hdV} , %	0,9	1,1	1,8	4,2
		U ,	0	1,2	0	2,8
	9	, %	0	0,5	0	1,3
		T_{hdV} , %	0,9	1,1	1,8	4,2
		U ,	0	1,3	2,1	7,8
	11	, %	0	0,9	0,9	3,3
		T_{hdV} , %	0,9	1,1	1,8	4,2
		U ,	0	0	0	1,8
	13	, %	0	0	0	0,7
		T_{hdV} , %	0,9	1,1	1,8	4,2
		U ,	0	0	0	0
	15	, %	0	0	0	0
		T_{hdV} , %	0,9	1,1	1,8	4,2
		U ,	0	0	0	0
	17	, %	0	0	0	0
		T_{hdV} , %	0,9	1,1	1,8	4,2

		-	-		_	
	-		•	•	•	•
8		U,	226-230	230-233	226-230	230-233
-108	1	, %	100	100	100	100
-1		T_{hdV} , %	1,7	2,1	3,4	4,9
2		U ,	0	0	0	0
II	3	, %	0	0	0	0
		T_{hdV} , %	1,7	2,1	3,4	4,9
		U ,	0	2,6	5,2	6,9
	5	, %	0	1,4	2,3	2,9
		T_{hdV} , %	1,7	2,1	3,4	4,9
		U ,	0	2,5	4,3	8,4
	7	, %	0	1,3	1,8	3,5
		T_{hdV} , %	1,7	2,1	3,4	4,9
		U ,	0	0	0	2,1
	9	, %	0	0	0	0,9
		T_{hdV} , %	1,7	2,1	3,4	4,9
		U ,	0	2,3	2,5	6,4
	11	, %	0	1,1	1,1	2,6
		T_{hdV} , %	0	2,1	3,4	4,9
		U ,	0	0	1,8	3,0
	13	, %	0	0	0,8	1,3
		T_{hdV} , %	1,7	2,1	3,4	4,9
		U ,	0	0	1,2	1,8
	15	, %	0	0	0,5	0,9
		T_{hdV} , %	1,7	2,1	3,4	4,9
		U ,	0	0	1,2	2,5
	17	, %	0	0	0,5	1,1
		T_{hdV} , %	1,7	2,1	3,4	4,9

		-	_		_	
	-		•	•	•	•
9		U ,	225-229	229-233	225-229	229-233
-109	1	, %	100	100	100	100
-1		T_{hdV} , %	1,3	2,0	2,1	3,8
2		U ,	0	0	0	0
II	3	, %	0	0	0	0
		T_{hdV} , %	1,3	2,0	2,1	3,8
		U ,	0	2,5	3,0	3,9
	5	, %	0	1,4	1,3	1,7
		T_{hdV} , %	1,3	2,0	2,1	3,8
		U ,	0	0	2,5	4,6
	7	, %	0	0	1,1	2,0
		T_{hdV} , %	1,3	2,0	2,1	3,8
		U ,	0	2,4	0	2,5
	9	, %	0	1,3	0	0,7
		T_{hdV} , %	1,3	2,0	2,1	3,8
		U ,	0	2,3	1,8	7,7
	11	, %	0	1,2	0,7	3,3
		T_{hdV} , %	1,3	2,0	2,1	3,8
		U ,	0	0	1,2	2,8
	13	, %	0	0	0,5	1,1
		T_{hdV} , %	1,3	2,0	2,1	3,8
		U ,	0	0	0	0
	15	, %	0	0	0	0
		T_{hdV} , %	1,3	2,0	2,1	3,8
		U ,	0	0	2,5	3,5
	17	, %	0	0	1,3	1,5
		T_{hdV} , %	1,3	2,0	2,1	3,8

• -		-		-		-
	-	·		•	•	•
10		U ,	225-229	229-233	225-229	229-233
-110	1	, %	100	100	100	100
-1		T_{hdV} , %	1,6	2,3	3,5	4,8
2		U ,	0	0	0	0
Ι	3	, %	0	0	0	0
		T_{hdV} , %	1,6	2,3	3,5	4,8
		U ,	0	2,6	6,1	7,9
	5	, %	0	1,4	2,6	3,4
		T _{hdV} , %	1,6	2,3	3,5	4,8
		U ,	0	2,5	3,9	6,4
	7	, %	0	1,7	1,7	2,7
		T_{hdV} , %	1,6	2,3	3,5	4,8
		U ,	0	0	0	0
	9	, %	0	0	0	0
		T_{hdV} , %	1,6	2,3	3,5	4,8
		U ,	0	2,3	2,5	4,7
	11	, %	0	1,1	1,1	2,0
		T_{hdV} , %	1,6	2,3	3,5	4,8
		U ,	0	0	0	0
	13	, %	0	0	0	0
		T_{hdV} , %	1,6	2,3	3,5	4,8
		U ,	0	0	0	0
	15	, %	0	0	0	0
		T _{hdV} , %	1,6	2,3	3,5	4,8
		U ,	0	0	0	0
	17	, %	0	0	0	0
		T_{hdV} , %	1,6	2,3	3,5	4,8

	_	-		_		-
	_		•	•	•	•
11		U,	227-229	-	227-229	-
-105 _	1	, %	100	-	100	-
8		T_{hdV} , %	0,8	-	0,9	-
Ι		U,	0	-	0	-
	3	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U,	0	-	1,2	-
	5	, %	0	-	0,5	-
		T_{hdV} , %	0,8	-	0,9	-
		U,	0	-	1,7	-
	7	, %	0	-	0,8	-
		T_{hdV} , %	0,8	-	0,9	-
		U,	0	-	0	-
	9	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U,	0	-	0	-
	11	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U,	0	-	0	-
	13	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U,	0	-	0	-
	15	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U,	0	-	0	-
	17	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-

	_	-		-		-
	-		•	•	•	•
12		U ,	223-225	-	223-225	-
-110 _	1	, %	100	-	100	-
8		T_{hdV} , %	0,9	-	1,1	-
II		U ,	0	-	0	-
	3	, %	0	-	0	-
		T_{hdV} , %	0,9	-	1,1	-
		U ,	0	-	1,8	-
	5	, %	0	-	0,7	-
		T_{hdV} , %	0,9	-	1,1	-
		U ,	0	-	1,7	-
	7	, %	0	-	0,8	-
		T_{hdV} , %	0,9	-	1,1	-
		U ,	0	-	0	-
	9	, %	0	-	0	-
		T_{hdV} , %	0,9	-	1,1	-
		U ,	0	-	0	-
	11	, %	0	-	0	-
		T_{hdV} , %	0,9	-	1,1	-
		U ,	0	-	0	-
	13	, %	0	-	0	-
		T_{hdV} , %	0,9	-	1,1	-
		U ,	0	-	0	-
	15	, %	0	-	0	-
		T_{hdV} , %	0,9	-	1,1	-
		U ,	0	-	0	-
	17	, %	0	-	0	-
		T_{hdV} , %	0,9	-	1,1	-

		-		-		-
	-		•	•	•	•
13		U,	229-231	-	229-231	-
-10/1	1	, %	100	-	100	-
-12		T_{hdV} , %	0,8	-	0,9	-
1		U ,	0	-	0	-
	3	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U ,	0	-	1,2	-
	5	, %	0	-	0,6	-
		T_{hdV} , %	0,8	-	0,9	-
	7	U ,	0	-	1,3	-
		, %	0	-	0,7	-
		T_{hdV} , %	0,8	-	0,9	-
	9	U ,	0	-	0	-
		, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U ,	0	-	0	-
	11	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U ,	0	-	0	-
	13	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U ,	0	-	0	-
	15	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-
		U ,	0	-	0	-
	17	, %	0	-	0	-
		T_{hdV} , %	0,8	-	0,9	-

		-	_		-	
	-		•	•	•	•
14		U,	230-232	-	230-232	-
-10/2	1	, %	100	-	100	-
-12		T_{hdV} , %	0,7	-	0,8	-
2		U,	0	-	0	-
	3	, %	0	-	0	-
		T_{hdV} , %	0,7	-	0,8	-
		U,	0	-	1,2	-
	5	, %	0	-	0,5	-
		T_{hdV} , %	0,7	-	0,8	-
		U,	0	-	1,3	-
	7	, %	0	-	0,6	-
		T_{hdV} , %	0,7	-	0,8	-
		U,	0	-	0	-
	9	, %	0	-	0	-
		T_{hdV} , %	0,7	-	0,8	-
		U,	0	-	0	-
	11	, %	0	-	0	-
		T_{hdV} , %	0,7	-	0,8	-
		U,	0	-	0	-
	13	, %	0	-	0	-
		T_{hdV} , %	0,7	-	0,8	-
		U,	0	-	0	-
	15	, %	0	-	0	-
		T_{hdV} , %	0,7	-	0,8	-
		U,	0	-	0	-
	17	, %	0	-	0	-
		T_{hdV} , %	0,7	-	0,8	-

]				
		-		-	-	
•				- U _y , %	K _{2U}	K _{0U}
Ι	20	U_{AB}	6180	2,04	1,74	1,65
	20	U _{BC}	6228			
	20	U _{CA}	6204			
	20	UA	3568			
	20	UB	3596			
	20	U _C	3582			
II	20	U _{AB}	6108	1,32	1,60	1,57
	20	U _{BC}	6132			
	20	U _{CA}	6156			
	20	UA	3526			
	20	UB	3540			
	20	U _C	3554			

RC-

•

, RC-

2.1.2

RC-

•		-		- U _y , %	K _{2U}	K _{0U}
Ι	20	U _{AB}	6207	2,31	1,97	1,90
	20	U _{BC}	6255			
	20	U _{CA}	6232			
	20	UA	3595			
	20	UB	3624			
	20	U _C	3609			

2.1.3

RC-

		1				
		-		-	-	
•				- U _y , %	K _{2U}	K _{0U}
II	20	U _{AB}	6135	1,59	1,85	1,81
	20	U _{BC}	6159			
	20	U _{CA}	6183			
	20	UA	3553			
	20	UB	3567			
	20	U _C	3581			

_

2.1.1

2.1.2 2.1.3

.

I- II	-
-------	---

2	0
5	0

2	2	1
_	• 4	• 1

		-			
-	-		RC .	.RC .	RC .
Ι		U,	3596	3624	3624
	1	, %	100	100	100
		T_{hdV} , %	1,7	9,7	6,7
		U,	0	62	44
	3	, %	0	1,7	1,2
		T_{hdV} , %	1,7	9,7	6,7
		U ,	47	102	76
	5	, %	1,3	2,8	2,1
		T_{hdV} , %	1,7	9,7	6,7
		U ,	43	69	62
	7	, %	1,2	1,9	1,7
		T_{hdV} , %	1,7	9,7	6,7
		U ,	0	44	0
	9	, %	0	1,2	0
		T_{hdV} , %	1,7	9,7	6,7
		U ,	0	55	40
	11	, %	0	1,5	1,1
		T_{hdV} , %	1,7	9,7	6,7
		U ,	0	58	47
	13	, %	0	1,6	1,3
		T_{hdV} , %	1,7	9,7	6,7
		U ,	0	51	36
	15	, %	0	1,4	1,0
		T_{hdV} , %	1,7	9,7	6,7
		U ,	0	47	33
	17	, %	0	1,3	0,9
		T_{hdV} , %	1,7	9,7	6,7

		-			
-	-		RC .	.RC .	RC .
II		U,	3554	3581	3581
	1	, %	100	100	100
		T_{hdV} , %	1,9	10,2	7,6
		U,	0	68	50
	3	, %	0	1,9	1,4
		T_{hdV} , %	1,9	10,2	7,6
		U ,	53	111	86
	5	, %	1,5	3,1	2,4
		T_{hdV} , %	1,9	10,2	7,6
		U ,	46	82	72
	7	, %	1,3	2,3	2,0
		T_{hdV} , %	1,9	10,2	7,6
	9	U ,	0	46	29
		, %	0	1,3	0,8
		T_{hdV} , %	1,9	10,2	7,6
		U ,	0	61	54
	11	, %	0	1,7	1,5
		T_{hdV} , %	1,9	10,2	7,6
		U ,	0	68	57
	13	, %	0	1,9	1,6
		T_{hdV} , %	1,9	10,2	7,6
		U ,	0	61	46
	15	, %	0	1,7	1,3
		T_{hdV} , %	1,9	10,2	7,6
		U ,	0	54	39
	17	, %	0	1,5	1,1
		T_{hdV} , %	1,9	10,2	7,6

39

2.3.1

•		-		- - U _v , %	K _{2U}	K au
Ι	20	U _{AB}	10450	4,16	2,02	2,05
	20	U _{BC}	10380			
	20	U _{CA}	10420			
	20	U _A	6033			
	20	UB	5993			
	20	U _C	6016			
II	20	U _{AB}	10250	3,76	1,90	1,97
	20	U _{BC}	10580			
	20	U _{CA}	10300			
	20	U_A	5918			
	20	UB	6108			
	20	U _C	5946			

2.3.2

	1			1	
		-		,	-
•			,	%	- T _{hdV} , %
Ι	20	1	6033	100	6,1
	20	5	265	4,4	
	20	7	175	2,9	
	20	11	163	2,7	
	20	13	103	1,7	
II	20	1	6108	100	6,01
	20	5	269	4,4	
	20	7	165	2,7	
	20	11	153	2,5	
	20	13	104	1,7	

		-		-	-	
•				- U _y , %	K _{2U}	K _{0U}
Ι	20	U _{AB}	9380	- 6,56	0,51	0,57
	20	U _{BC}	9300			
	20	U _{CA}	9350			
	20	UA	5416			
	20	UB	5369			
	20	U _C	5398			
II	20	U _{AB}	9300	- 6,76	0,48	0,51
	20	U _{BC}	9360			
	20	U _{CA}	9320			
	20	UA	5369			
	20	UB	5403			
	20	U _C	5380			

10

,

RC- -

•

2.4.2. 2.4.3

2.4.1

		-		
-	-		RC .	RC .
Ι		U ,	5416	5416
	1	, %	100	100
		T_{hdV} , %	18,6	11,8
		U ,	531	498
	5	, %	9,8	9,2
		T_{hdV} , %	18,6	11,8
		U,	320	303
	7	, %	5,9	5,6
		T_{hdV} , %	18,6	11,8
		U ,	200	179
	11	, %	3,7	3,3
		T_{hdV} , %	18,6	11,8
		U ,	179	125
	13	, %	3,3	2,3
	17	T_{hdV} , %	18,6	11,8
		U ,	227	70
	17	, %	4,2	1,3
		T_{hdV} , %	18,6	11,8
		U ,	276	65
	19	, %	5,1	1,2
		T_{hdV} , %	18,6	11,8
		U ,	114	0
	21	, %	2,1	0
		T_{hdV} , %	18,6	11,8
		U ,	97	0
	23	, %	1,8	0
		T_{hdV} , %	18,6	11,8
		U ,	173	0
	25	, %	3,2	0
		T_{hdV} , %	18,6	11,8
		U ,	179	0
	29	, %	3,3	0
		T_{hdV} , %	18,6	11,8
		U ,	146	0
	33	, %	2,7	0
		T_{hdV} , %	18,6	11,8

		-		
-	-		RC .	RC.
II		U,	5403	5403
	1	, %	100	100
		T_{hdV} , %	18,6	11,8
		U,	529	479
	5	, %	9,8	9,2
		T_{hdV} , %	18,6	11,8
		U ,	319	302
	7	, %	5,9	5,6
		T_{hdV} , %	18,6	11,8
		U ,	200	178
	11	, %	3,7	3,3
		T_{hdV} , %	18,6	11,8
		U ,	178	124
	13	, %	3,3	2,3
		T_{hdV} , %	18,6	11,8
		U ,	227	70
	17	, %	4,2	1,3
		T_{hdV} , %	18,6	11,8
		U ,	275	65
	19	, %	5,1	1,2
		T_{hdV} , %	18,6	11,8
		U ,	114	0
	21	, %	2,1	0
		T_{hdV} , %	18,6	11,8
		U ,	97	0
	23	, %	1,8	0
		T_{hdV} , %	18,6	11,8
		U ,	173	0
	25	, %	3,2	0
		T_{hdV} , %	18,6	11,8
		U ,	179	0
	29	, %	3,3	0
		T_{hdV} , %	18,6	11,8
	22	U ,	146	0
	33	,%	2,7	0
		T_{hdV} , %	18,6	11,8

43

 (T_{hd})

,

,

,

,

:

45

-

 ${-}_{ij} = {1 \over n_i} \sum_{j=1}^{n_i} Z_{ij}$, (2.1)

:

; : 2

,

$$D_{I} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} \left(z_{ij} - \overline{X}_{ij} \right)^{2}$$
(2.2)

,

$$S_i = \sqrt{D_I} \tag{2.3}$$

$$V = \frac{S_i}{\overline{X}} \tag{2.4}$$

,

•

;

•

2

:

;

2.

:

1.

2.

3.

3

-

-

-

,

t_X,

1.

:

n_i –

z_{ij} –

$$t_{\bar{X}} = \frac{\left| \bar{X}_{i} - \bar{X}_{j} \right|}{\sqrt{\frac{S_{i}^{2}}{n_{i}} + \frac{S_{j}^{2}}{n_{j}}}} \bullet \sqrt{\frac{n_{i} \cdot n_{j} (n_{i} + n_{j} - 2)}{n_{i} + n_{j}}}, \qquad (2.5)$$

$$\overline{X_i}$$
 -; $\overline{X_j}$ -; n_i -; n_j -.

t_s, :

$$t_{s} = \frac{|S_{i} - S_{j}|}{\sqrt{\frac{S_{i}^{2}}{2n_{i}} + \frac{S_{j}^{2}}{2_{ij}}}},$$
(2.6)
S_i - ;
S_j - ;
2
. 2.6 {X²}.

•

•

,

$$\{X^2\}$$

•

,

,

•

, t_S 3, t_X 3, { X^2 }> 0,05,

-

-

,

. 2.6.

3.

:

1.

2.

(

)

. 2.6,

	-		-	0.	-
		X	D	S	m
1	-101	27,05	825,31	28,72821	4
2	-102	10,075	87,0425	9,329657	4
3	-103	26,775	799,2225	28,27052	4
4	-104	11,875	144,5225	12,02175	4
5	-105	19,15	385,7167	19,63967	4
6	-106	24,45	661,8233	25,72593	4
7	-107	14,6	202,2867	14,22275	4
8	-108	13,4	184,8333	13,59534	4
9	-109	18,875	375,6625	19,38201	4
10	-110	9,25	73,77	8,588946	4
11	-105	17,15	477,405	21,8496	2
12	-110	20,3	691,92	26,30437	2
13	-10/1	39,05	3049,805	55,22504	2
14	-10/2	36,85	2715,845	52,11377	2
	7-	:			
	1.				
		1 12	1 13	12 13	2 11
	ts=	0,14586	-0,9006	-0,94559	-1,09709
	tx=	0,663316	-0,66604	-0,61305	-1,0124
	2.				
		1 10	11 12	13 14	12
	ts=	1,899719	-0,26055	0,081949	1,81649
	tx=	4,112837	-0,18424	0,057947	3,89358

. 2.7.

2

(

1.

0,4

5- 7-),

 T_{hdI}

48

_

,

•

,

2.

					T_{hd}	Ι,	-
2	,	7	Γ_{hdU}		•		
3.						T _{hdI} ,	
		,					_
	50						
4.							-
				50 .			
5.				(Lim =	– 10 %, Li	m = + 6 %)	-
6							_
0.	,			,		,	-
	-						-
							•
7.							
(K _{2U})	(K _{0U})						
0						C	
8.	-1		,		Т	0	-
	-1,				∎ hdU,		_
			RC-				
T_{hdU}							
9.		-5		T_{hdU}			-
						RC	<u>-</u> -
	•						-
	T_{hdU}		,			-	

•

49

,

•

,

,

,

software

MCT 31 Harmonic calculation

 $-T_{hd}$

MATLAB/SIMULINK

MCT 31 Harmonic calculation software

,

-1.

. 3.1

•

,

3.1.1				-101.
– VACON 132CXI		= 132	,	I = 270
_	16-34-24	1,		= 90
-	2 (3*70 + 1*3	5),	125	
1.				

,	Q = 220	:
Total harmonic voltage distortion (T_{hdV})	3.48	%
Total harmonic current distortion (T_{hdl})	41.21	%
Total demand distortion (T_{hd})	38.11	%

. 3.1

3.1

•

	1	5	7	11	13	17	19	23	25	29	31	35	37	41	43
- , %	100	2.4	2.1	0.6	0.5	0.5	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.2	0.2
- ,	401	9.5	8.5	2.6	2.0	2.1	1.7	1.8	1.5	1.5	1.3	1.2	1.1	1.0	0.9
	231	5.5	4.9	1.5	1.1	1.2	1.0	1.0	0.9	0.9	0.8	0.7	0.6	0.6	0.5
- , %	100	34	21	4.3	2.7	2.3	1.6	1.4	1.1	0.9	0.8	0.6	0.5	0.4	0.4
,	369	126	81	15.7	10.1	8.4	6.0	5.2	4.0	3.4	2.8	2.3	2.0	1.6	1.4

. 3.2

2	
4	•

Total harmonic voltage distortion (T_{hdV})	3.57	%
Total harmonic current distortion (T_{hdl})	44.29	%
Total demand distortion (T_{hd})	40.50	%

:

•

_

.

	1	5	7	11	12	17	10	22	25	20	21	25	27	11	12
	T	5	/	11	13	1/	19	23	25	29	31	35	51	41	43
-	100	2.4	2.2	0.7	0.5	0.5	0.4	0.5	0.4	0.4	0.3	0.3	0.3	0.3	0.2
, %															
-	397	9.6	8.6	2.6	2.0	2.2	1.7	1.8	1.5	1.5	1.3	1.2	1.1	1.0	0.9
,															
	229	5.6	5.0	1.5	1.2	1.2	1.0	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.5
,															
-	100	36	23	4.6	2.9	2.4	1.7	1.5	1.2	1.0	0.8	0.7	0.6	0.5	0.4
, %															
,	348	128	82	15.9	10.3	8.5	6.1	5.3	4.1	3.5	2.9	2.3	2.0	1.6	1.5

. 3.3

3.1.2				-110) .	-105.	
– VACON 110CXL4	ŀ,	= 110	,	I = 2	10 .		
_	16-34-24	1,		= 90			
_	4*95 :	-110	- 125	,	-105 -	160	•

 T_{hd}

-

-

1.	-110 :	
Total harmonic voltage di	stortion (T_{hdV})	2.85 %
Total harmonic current di	stortion (T_{hdI})	42.47 %
Total demand distortion (2	(Γ_{hd})	39.09 %

•

,

. 3.3

,

3.3

	1	5	7	11	13	17	19	23	25	29	31	35	37	41	43
- %	100	1.9	1.7	0.5	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.2	0.2	0.2	0.2
- ,	397	7.7	6.8	2.2	1.6	1.8	1.4	1.5	1.2	1.2	1.1	1.0	0.9	0.8	0.7
,	229	4.5	3.9	1.2	0.9	1.0	0.8	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.4
- , %	100	35	22	4.5	2.9	2.4	1.7	1.5	1.1	1.0	0.8	0.6	0.6	0.4	0.4
,	290	103	64	13.1	8.3	6.9	4.9	4.3	3.3	2.8	2.3	1.8	1.6	1.3	1.2

. 3.4

-110

54

0	
L	•

-105 :

Total harmonic voltage distortion (T_{hdV}) 2.69 %Total harmonic current distortion (T_{hdI}) 40.07 %Total demand distortion (T_{hd}) 37.20 %

. 3.4

	1	5	7	11	13	17	19	23	25	29	31	35	37	41	43
- , %	100	1.9	1.6	0.5	0.4	0.4	0.3	0.4	0.3	0.3	0.3	0.2	0.2	0.2	0.2
- ,	397	7.4	6.2	2.2	1.6	1.7	1.4	1.4	1.2	1.1	1.0	0.9	0.8	0.7	0.7
,	229	4.3	3.6	1.2	0.9	1.0	0.8	0.8	0.7	0.7	0.6	0.5	0.5	0.4	0.4
- , %	100	33	20	4.5	2.8	2.3	1.7	1.4	1.1	0.9	0.8	0.6	0.5	0.4	0.4
,	290	98	59	13.1	8.1	6.8	4.8	4.1	3.2	2.6	2.2	1.7	1.5	1.2	1.1

3.4

_

-105

3.1.3		-10/1	-10/2.
– VLT 6052,	= 37 ,	I = 80 .	
	– AB 250 S – 8 2,	= 37	
_	3*70 + 1*35	: -10/1 - 160	, -10/2 - 155

,

1.	-10/1	:		
Total harmonic volt	tage distortion (T_{hdV})		2.15	%
Total harmonic cur	rent distortion (T_{hdl})		39.27	%
Total demand distor	rtion (T_{hd})		36.55	%

,

. 3.5

3.5

	1	5	7	11	13	17	19	23	25	29	31	35	37	41	43
- , %	100	1.1	0.8	0.6	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4
- ,	390	4.4	3.3	2.4	2.1	2.0	1.8	1.8	1.7	1.6	1.6	1.5	1.5	1.4	1.4
,	225	2.5	1.9	1.4	1.2	1.2	1.1	1.0	1.0	0.9	0.9	0.9	0.9	0.8	0.8
- ,%	100	31	18.3	9.3	6.9	5.0	4.2	3.3	2.9	2.4	2.2	1.8	1.7	1.5	1.4
,	62	19.5	11.4	5.7	4.3	3.1	2.6	2.1	1.8	1.5	1.4	1.1	1.1	0.9	0.9

210)/2:	
Total harmonic voltage distortion	$n(T_{hdV}) \qquad \qquad 0.49 g$	%
Total harmonic current distortion	$n(T_{hdl})$ 9.16	%
Total demand distortion (T_{hd})	9.12	%

. 3.6

	1	5	7	11	13	17	19	23	25	29	31	35	37	41	43
- , %	100	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.1	.07	.08	.05	.06	.05	.05
- ,	390	1.0	0.9	0.7	0.4	0.6	0.5	0.4	0.4	0.3	0.3	0.2	0.2	0.2	0.2
,	225	0.6	0.5	0.4	0.3	0.4	0.3	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1
- , %	100	6.9	4.8	2.5	1.4	1.5	1.0	0.8	0.7	0.4	0.4	0.3	0.3	0.2	0.2
,	62	4.3	3.0	1.6	0.9	1.0	0.6	0.5	0.4	0.3	0.3	0.2	0.2	0.1	0.1

. 3.7

3.6

IEC 61000-3, IEEE 519,

•

,

•

,

«

13109-97 [11],

51317.3.2.-99 (61000-3-2-95).

».

,

[12].

,

.

,

,

•

,

•

,

_

:
MATLAB/Simulink (6.5)

,

SimPowerSystems.

,

[13],

,

· P

,

-

S

,

(...)

P:

,

,

, [13]–[17]. [13]: T

Т

Q,

[14].

,

,

Q,

[15], [17],

,

, . c [13].

[13] :

-

H.

$$S = \sqrt{P^2 + Q^2 + T^2 + H^2}$$

[13], [15]–[17]:

$S = \sqrt{P^2 + Q^2 + T^2}$				(3.1)
			S	Ρ,
Q T				
[3]: <i>K</i> —		, K —		, <i>K</i> -
	, <i>K</i>			Kthd ,
К —		•		
				-

,

$$K_{MOULHOCTU} = \frac{P}{S}$$

,

,

:

$$K_{c \partial b u c a} = \frac{P}{\sqrt{P^2 + Q^2}}$$

$$K_{uckacehus} = \frac{\sqrt{P^2 + Q^2}}{\sqrt{P^2 + Q^2 + T^2}}$$

:

$$K_{\text{гармоник}} = \frac{T}{\sqrt{P^2 + Q^2}} = \sqrt{\left(\frac{1}{K_{\text{искажения}}}\right)^2 - 1}$$

IEC 61000-3, IEEE 519, EN 61000-3-2,

:

,

49

,

MATLAB/Simulink

THD (Total Harmonic Distortion)

SimPowerSystems,

:

$$K_{THD} = K_{гармоник} = \frac{\sqrt{\sum_{k=2}^{N} (I_k)^2}}{I_1}$$

(

$$(K = 1)$$

$$K_{\text{Hecummempu.u}} = \frac{\sqrt{(P^2 + Q^2 + T^2)}}{S}$$

[13]. [18],

_

$$() : \\S_{3} = 3U I, P_{3} = 3P, Q_{3} = 3Q \\U - , I - \\.$$
(3.2)

) [19]:

61

$3U_{\Phi}I_{\Phi} = \sqrt{3}U_{\pi}I_{\pi}$	л, U —				- 62
	(3.2)		[19]		:
$S_3 = \sqrt{3}U_{\pi}I_{\pi}$					(3.3)
				(3.1):	
$T_3 = \sqrt{S_3^2 - (P_3^2 + P_3^2)}$	(Q_3^2)				(3.4)
					-
		,		[19]	-
				[17],	-
		()		
()			,	
MA	ATLAB/Simulink	•			-
Three-Phase Active	& Reactive Pov	wer (. 3.8)	,		-

(subsystem).

Active & Reactive Power,

 $SimPowerSystems \setminus ExtraLibrary \setminus Measurements.$

Three-Phase Active & Reactive Power

(3.3) (3.4)

Symmetric Three-Phase Power Measurement (. 3.9).

Symmetric Three-Phase Power Measurement

-

(

)

[20],

$$Q_3 = \sqrt{3}P_W. \tag{3.5}$$

(3.5),

3.10).

c

(. 3.10).

. 3.11

Parameters of Quality of Energy Con-

sumption Measurement (. 3.12).

(Display2

:

[21]

. 3.12.

.

Parameters of Quality of Energy Consumption Measurement

66

_

. 3.13.

,

67

_

()[23].

60050-551 (AC/DC Converter) [24], [25].

/

. 3.14.

68

[17], [32], [33];

,

[24], [25].

[30], [31].

[29].

[24], [35].

,

:

[28]. : (IGBT) (IGCT) _), (

)

(

-

 $: U_{mV}/U_{m1} = 1/\notin , \qquad (3.1)$ $U_{mV} - \oint - \qquad ; \notin = 6n \pm 1; n = 1, 2, 3... \qquad (3.1)$ $(3.1) \qquad , \qquad (3.1)$

,

$$k = 3 -$$

,

,

,

•

,

•

_

71

;

4.1.

.

,

,

,

[3],

_

,

, _

0,4 ,

,

« » 0,4

),,

, .

74

_

_

,

_

, (). ()

,

, . . (13109-97)

· [4,5], 90-:

- - ; - ; - () ()

> , , .

. – .

-.). (, : L-, , , L

75

(. 4.1).

:

,

,

,

,

•

,

,

:

(. 4.2)

(IG –) ()

:

1. $s \phi = 1$ (); 2. () ,

; 3. *L* -

,

" (. 4.3) [6].

-

,

~

 i_L , i_L , i_L .

»

 L_d ,

-

(

"

"

и

)

"

*i*_{*L*},

(),

,

"

4-

,

"

/

,

,

"

,

10 – 15

IG -

L -

,

[8],

_

L , C , R

•

,

,

,

_

10 %

_

[9].

,

,

•

)

. 4.6.

,

,

,

;

83

15 %

0,7.

3.

4.

;

φ.

,

$$=\frac{U_{c}U_{H}\sin\{}{\tilde{S}L},$$
(4.1)
$$\tilde{S}L-$$

:

.

,

$$Q_C = \frac{U \Delta U}{\check{S}L}, \qquad (4.2)$$
$$UU - .$$

.

:

,

,

_

-

4.2.

,

,

,

,

,

[39]

,

,

_

•

,

•

,

,

		30		, 24-		_	
	15		, 36-		_		
10		•					

.

_

•

_

-

_

_

_

_

-

6	90
12	65
24	38
36	15

•

4.1,		-
·· - ,		

_

-

. .

_ . ,

, . .

, ()

, , , .

, , . ,

, 5- 13- , . .

(

,

,

).

),

)

(

,

(

,

,

,

4.3.

,

,

88

(30 60)

Q

89

,

,

4.4.

91

,

,

•

:

,

)

;

,

.

,

,

,

,

,

;

,

,

.

1)

2)

3)

(

,

,

,

,

,

,

,

(

).

•

4.4.1.

:

,

,

,

•

,

,

1	RT	C	
		\sim	

_

(. 4.3),			(-
).		
	\mathbf{f}_{n}			-
R :				
$Z = R + j(\check{S}L - \frac{1}{\check{S}C}).$				(4.6)

Q, ,
:
$$\check{S} = \check{S}_n (1+u)$$
, $\check{S}_n = \frac{1}{\sqrt{LC}}$ [/].

: • 4.4.2. : 1) , , •• •

,

_

2) , , 3) ,

, , , . :

1) , ;

2) •

,

-

,

,

,

· - , r

L

,

-

4).

1	10	
4.	IU	

R = 1 ; = 220 .

,

1- :

_

:

- •
- •
- /

- 6
- - 2006 .

•

0,38 6-10 ;

,

- ;
- ; $s \phi T_{hd}$.
 - ;
- ; ()
- · _ _
 - -
 - « » -

•

- , 1987.
- Victor A. Ramos JR. Treating Harmonics in Electrical Distribution System.
 Computer Power & Consulting, 1999.
- 4. •

. – .: , 1983.

- 5. Sabin D. Daniel, Sundaram Ashok. Quality Enhances Reliability//Spectrum IEEE. – 2, 1996. . 38-44.
- c. z r ni M., Joos G., Ziogas P. D. r gr mm ble input w r factor correction methods for single phase diode rectifiers circuits//I ransactoins on industry applications. 7, 1990. 177-183.
- lication note AT2 9402 E. SI NS utomotive/ ransportation/Industrial 1 tronics. – wer Factor Controller TDA 4862.
- 8.

•••, •

: 10, 1995. . 33-39.

- 9. . .,
 - . . . \/II-

": (). 2001, . 99-100.

"

••

12. •, // . . .—1996.— .39.— 3.— .5. 13. , 1978.—320 . .: 14. • .— 1952.— 3. // 15. : , 1985.—136 . .: 16. : • M.: , 1985.—112 . 17. : 1990.—220 . 18. • •, . 1967. 2 .— .: . 19. : : 8-., 1984. — 559 .. .: • •• 20. -/ : .: , 1982.—768 .

 Gyugyi L., Stricula E. C. Active AC power filters // Conf. Rec. Meet IEEE Ind. Appl. Soc.— 1976.— P.529–535. 22. // - 1993.— 6.— C.45–48. 23. • • / , 2001.—250 c. : 24. . C () // 1998.— 3.— C.10–17. 25. . C

// .— 1999.— 4.— C.28–32.

- 26. Vlatkovic V., Borojevic D., Lee F. C. A zero-voltage switched, threephaseisolated PWM buck rectifier // IEEE Trans. on Power Electronics.— V.10.—N.2.— March 1995.— P.148–157.
- 27. Mao H., Lee F. C., Boroyevich D., Hiti S. Review of high performance threephase power-factor correction circuits // IEEE Trans. Ind. Electron.— V.44.— Aug. 1997.— P.437–446.

28.

, 1988. — 240 .

Katic V. A., Graovac D. A method for PWM rectifier line side filter optimization in transient and steady states // IEEE Trans. on Power Electronics.—V.17.— N.3.— May 2002.— P.342–352.

.:

Rastogi M., Naik R., Mohan N. A comparative evaluation of harmonic reduction techniques in three phase utility interface of power electronic loads //Proc. IEEE—IAS Ann. Meeting.— Toronto, Canada, Oct. 1993.— P.971–978.

- Malesani L., Tenti P. Three-phase ac/dc PWM converter with sinusoidal ac currents and minimum filter requirements // IEEE Trans. Ind. Applicat.— V.23.— Jan./Feb. 1987.— P.71–77.
- Pouliquen H., Rioual P. Vector control of shunt active filters // Epe'95.— Sevilla, 1995.— V.1.— P.880–885.
- 33. Lee W.-C., Hyun D.-S., Lee T.-K. A novel control method for three-phase PWM rectifiers using a single current sensor // IEEE Trans. on Power Electronics.—V.15.— N.5.— Sept. 2000.— P.861–870.
- 34. Bose B. K. Expert system, fuzzy logic, and neural network applications in power electronics and motion control // Proc. IEEE.— V.82.— Aug. 1994.— P.1303–1323.
- 35. Ghazi R., Toliyat H. A., Rafiri S. M. R. A fuzzy-genetic pulse width modulation for active power filters // Stockholm power tech. conference.— Stockholm, Sweden, 1995.— P.267–272.
- 36. Dixon J. W., Contardo J. M., Moran L. A. A fuzzy-controlled active frontend rectifier with current harmonic filtering characteristics and minimum sensing variables // IEEE Trans. on Power Electronics.— V.14.— N.4.— July 1999.— P.724–729.
- 37. Carraso J. M., Quero J. M., Gomes R., Franquelo L. G. An analog neural network controller for an active power filter on the instantaneous reactive power theory // Epe'95.— Sevilla, 1995.— V.1.— P.385–389.

. .

38.

MATLAB 6.0 // - . — 2001. — 320 .

39.

, 2, 1997,

101

. 104-108.

//

$$= \sqrt{\frac{1}{12}} \left[\left(\sqrt{3} U_{AB(1)i} + \sqrt{4} U_{BC(1)i}^{2} - \left(\frac{U_{BC(1)i}^{2} - U_{CA(1)i}^{2}}{U_{AB(1)i}} + U_{AB(1)i} \right)^{2} \right)^{2} + \left(\frac{U_{BC(1)i}^{2} - U_{CA(1)i}^{2}}{U_{AB(1)i}} \right) \right],$$
(1.1)

$$U_{AB(1)i}, U_{BC(1)i}, U_{CA(1)i}$$
 –

i- , .
:
1)
$$U_{1(1)i}$$
 ;
2) $U_{1(1)i}$:

-

•

, (24 .)

-

-

95 %

,

2.1. δUt (.1.1) :

,

,

 $\delta U_{t} = \frac{\left| U_{i} - U_{i+1} \right|}{U_{\text{HOM}}} \cdot 100 , \qquad (1.5)$

 $U_i, U_{i+1} -$

, .

,

,

(1.5)

,

()

5 %,

 $\delta U_{t} = \frac{\left| U_{ai} - U_{ai+l} \right|}{\sqrt{2} U_{bom}} \cdot 100 ,$ (1.6)

 $F_{\delta Ut}$, -1, -1, :

-

 $\delta \; U_t$

50,0; 80,0 %.

2.3.2.

,

 $P_{s},(\%)^{2},$:

$$\begin{array}{c} P_{1s} = \displaystyle \frac{P_{0,7} + P_{1,0} + P_{1,5}}{3} \\ P_{3s} = \displaystyle \frac{P_{2,2} + P_{3,0} + P_{4,0}}{3} \\ P_{10s} = \displaystyle \frac{P_6 + P_8 + P_{10} + P_{13} + P_{17}}{5} \\ P_{10s} = \displaystyle \frac{P_6 + P_8 + P_{10} + P_{13} + P_{17}}{5} \\ P_{50s} = \displaystyle \frac{P_{30} + P_{50} + P_{80}}{3} \\ \end{array} \right\} , \qquad (1.9)$$

,

$$P_{1s}$$
, P_{3s} , P_{10s} , P_{50s} -

:

,

:

2.3.3.

St,

sh

$$P_{St} = \sqrt{0.0314P_{0,1} + 0.0525P_{1s} + 0.0657_{3s} + 0.28_{10s} + 0.08_{50s}}$$
(1.10)

•

2.3.4.

••

T_L, P_{Lt}, 2 ,

,

k-

,

$$\mathbf{P}_{\text{Lt}} = \sqrt[3]{\frac{1}{12}\sum_{k=1}^{12} \left(\mathbf{P}_{stk}\right)^3},\tag{1.11}$$

stk-

 $T_{sh} \\$ -

-

-

,

24 .,

3. 3.1. n-() K_{(n)i} 24 3.1.1. i-•• U_{(n)i} n--• 3.1.2. n-

,

,

i-K_{U(n)i} :

$$K_{U(n)i} = \frac{U_{(n)i}}{U_{l(i)}} \cdot 100 , \qquad (1.12)$$

i-

 $K_{U(n)i} = \frac{U_{(n)i}}{U_{\text{HDM}}} \cdot 100.$ (1.13)

n-

3,

K_{U(n)i}

:

:

(1.13) (1.12)

 $U_{(1)i}$ U .

vs,

3.1.3.

U_{(1)i}-

K_{U(n)}

,

K_{U(n)i}

_

Ν -

_

$$K_{U(g)} = \sqrt{\frac{N}{2} \frac{\left(K_{U(g)}\right)^2}{N}}$$
(1.14)
N 9.
3.2.
24 n-
14 n-
15 %
1.14)
N 9.
1.14)
N 9.
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.14)
1.

2-40-

3.3.2.

:

 \mathbf{K}_{Ui} i-

_

_

_

_

_

-

-

_

•

$$\begin{split} \kappa_{\text{Ui}} = \frac{\sqrt{\sum\limits_{n=2}^{40} U_{(n)i}^2}}{U_{(n)i}} \cdot 100 , \qquad (1.15) \\ U_{(1)i^-} & () & - \\ & i - , , . & () & - \\ & i - , , . & . & . \\ 1) & , & . & . \\ 0,1 \%; & & & . \\ 2) & & : & \\ \kappa_{\text{Ui}} = \frac{\sqrt{\sum\limits_{u=2}^{40} U_{(n)i}^2}}{U_{\text{ROM}}} \cdot 100 , & (1.16) \\ & - & K_{\text{Ui}} & - \\ & (1.16) & (1.15) \\ & U_{(1)i} & U & . \\ 3.3.3. & & \\ K_{\text{U}} & & N \\ K_{\text{Ui}} & & T_{\text{vs}}, & 3 , & : \\ \end{split}$$

$$K_{U} = \sqrt{\frac{\sum_{i=1}^{N} K_{U_{i}}^{2}}{N}} .$$
 (1.17)

,

9.

3.4.

,

24 .

-

-

-

••

_

,

,

...1...12

•

,

,

. 1.2.

4. 4.1.

•

 $U_{AB(1)i},\,U_{BC(1)i},\,U_{CA}(1)i$

i-

4.1.2.

$$U_{2(1)i} : U_{2(1)i} = \sqrt{\frac{1}{12} \left[\left(\sqrt{3} U_{AB(1)i} - \sqrt{4} U_{BC(1)i}^2 - \left(\frac{U_{BC(1)i}^2 - U_{CA(1)i}^2}{U_{AB(1)i}} + U_{AB(1)i} \right)^2 \right)^2 + \left(\frac{U_{BC(1)i}^2 - U_{CA(1)i}^2}{U_{AB(1)i}} \right) \right].$$
(1.18)

4.1.3.

$$K_{2Ui} \quad i- \quad -$$

$$K_{2Ui} = \frac{U_{2(1)i}}{U_{1(1)i}} \cdot 100 , \quad (1.19)$$

$$U_{2(1)i^{-}} \quad i- \quad , ;$$

$$U_{1(1)I} - \quad i- \quad , . \\
K_{2Ui} \quad : \quad . \\
1) \quad U_{2(1)i} \quad : \quad . \\
U_{2(1)i} = 0,62 (U_{(1)i^{-}} U_{(1)i}) , \quad (1.20)$$

$$U_{(1)i}, U_{(1)I} - \quad i- \quad . , . .$$

-

-

24 .,

,

•

• •

•

,

$$K_{2Ui} - K_{2Ui} - (1.20) \qquad (1.18) \qquad 8 \ \%.$$
3)
$$U_{2(1)i} - \frac{1}{2} - \frac{$$

			$K_{2\mathrm{Ui}}$	-
(1.21)		(1.19)		-
U _{1(1)i}	U			

4.1.4.

 K_{2Ui}

K_{2U}				Ν
	T_{vs} ,	3,	:	
	N			

$$K_{2U} = \sqrt{\frac{\sum_{i=1}^{N} K_{2Ui}^{2}}{N}}.$$
 (1.22)

,

N 9.

,

4.2.

24 .

,

•

-

-

:

4.3.	, 1 . 12 , - 0 % .							-
	K_{oUi}							-
. 4.3.1.	i-					,	24 ,	-

,

,

 $U_{AB(1)i},\;U_{BC(1)i},\;U_{CA(1)i},\;U_{A(1)i},\;U_{B(1)i},\;$

4.3.2.

,

U_{0(1)i} i-

$$U_{0(1)i} = \frac{1}{6} \sqrt{\left[\frac{U_{BC(1)i}^{2} - U_{CA(1)i}^{2}}{U_{AB(1)i}} - 3 \cdot \frac{U_{B(1)i}^{2} - U_{A(1)i}^{2}}{U_{AB(1)i}}\right]^{2}} + \left[\sqrt{4U_{BC(1)i}^{2} - \left(U_{AB(1)i} - \frac{U_{BC(1)i}^{2} - U_{CA(1)i}^{2}}{U_{AB(1)i}}\right)^{2}} - 3\sqrt{4U_{B(1)i}^{2} - \left(U_{AB(1)i} - \frac{U_{B(1)i}^{2} - U_{A(1)i}^{2}}{U_{AB(1)i}}\right)^{2}}\right]^{-2}} \right]^{-2}$$

$$(1.23)$$

-

-

4.3.3.

:

 K_{0Ui}

 $K_{00i} = \frac{\sqrt{3}U_{0(1)i}}{U_{1(1)i}} \cdot 100, \qquad (1.24)$

i-

$U_{0(1)I} -$				
			i-	, ,
•				
$U_{1(1)i}$ -				-
		, , ·		
	K_{0Ui}	:		
1)	U _{0(1)i}		•,	
2)	U _{0(1)i}			-
	:			
	$U_{0(1)i} = 0,62$	$(U_{(1)i} - U_{(1)i}),$		(1.25)
U . (1)i,	U . (1)I –			-
		i-	, ,	
			K _{0(1)i}	-
	(1.25)	(1.23)	± 10 %;	
3)				
				,
	5 %;			
4)	K_{0Ui}	:		

 $K_{00i} = \frac{U_{0(1)i}}{U_{\text{HOM}, \Phi}} \cdot 100 , \qquad (1.26)$

_

-

, .

,

U . –

(1.26) (1.24) K_{0Ui} U_{1(1)i} U .

4.3.4.

 $K_{0U} \qquad N \\ K_{0Ui} \qquad \nu_{s}, \qquad 3 \ , \qquad : \qquad K_{0U} = \sqrt{\frac{\sum_{i=1}^{N} K_{0Ui}^{2}}{N}} \qquad (1.27) \\ N \qquad 9.$

4.3.5.

24 .

,

,

95 %

-

•

,

-

•

,

,

,

•

:

:

5.

5.1. i-

N

5.2.

 f_{i} . f_{y} , 20 ,

 $f_{y} = \frac{\sum_{i=1}^{N} f_{i}}{N} .$ (1.28)

15.

Ν

 Δf

5.3.

 $\Delta f = f_y - f \quad , \tag{1.29}$

,

,

,

 Δf

f – , . 5.4.

 $\mathbf{f}_{\mathbf{i}}$

24 . , , 95 %

5 %

, . . 1 . 12

-

•

6. Δt . 1.3) (: 6.1. (t 10) , , 0,9 U . 6.2. t _ 0,9 U . 6.3. Δt :

 $\Delta t = t - t$,

t,t –

(

,

,

6.4.

•

(1.30)

•

)

. 1.3) : U 6.5.1. . 6.5.2. 6.5.1. U_{min} , δU 6.5.3. : $\delta \mathbf{U}_{\mathbf{n}} = \frac{\mathbf{U}_{\text{hom}} - \mathbf{U}_{\text{min}}}{\mathbf{U}_{\text{hom}}} \cdot 100$ (1.31) 6.6. F -: $F_{\pi} = \frac{m(\delta \ U_{\pi} \Delta t_{\pi})}{M},$ (1.32) m (δU , Δt)δU

;

δU

(

,

,

6.5.

7.1.

152

(

,

	7.2.			0,5
t	0,5	,	(. 1.4)	
	7.2.1.			
			U . ,	
			(. 1.4).	
	7.2.2.		t _{0,5} , t _{0,5}	,

,

•

(. 1.4),

,

,

_

-

_

_

:

_

6-0,4

	-	,				
1	2	3	4	5	6	7
- 101	1	2 (3*70 + 1*35) 125	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -1I	VACON 132CXL4 =132 I=270	
- 102	2	2 (3*70 + 1*35) 160	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -1I	VACON 132CXL4 =132 I=270	
- 103	3	2 (3*70 + 1*35) 135	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -1 II	VACON 132CXL4 =132 I=270	
- 104	4	2 (3*70 + 1*35) 155	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -2I	VACON 132CXL4 =132 I=270	
- 105	5	2 (3*70 + 1*35) 145	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -2 II	VACON 132CXL4 =132 I=270	
- 106	6	2 (3*70 + 1*35) 140	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -1I	VACON 132CXL4 =132 I=270	

.1

1	2	3	4	5	6	7
- 107	7	2 (3*70 + 1*35) 150	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -1 II	VACON 132CXL4 =132 I=270	
- 108	8	2 (3*70 + 1*35) 145	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -2 II	VACON 132CXL4 =132 I=270	
- 109	9	2 (3*70 + 1*35) 160	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -2 II	VACON 132CXL4 =132 I=270	
- 110	10	2 (3*70 + 1*35) 175	16-34-24 1 n=250 / =90 ; I=233 U=380	-1 -2I	VACON 132CXL4 =132 I=270	
- 105 _	11	4*95 160	2 -75-24 1 n=250 / =75 ; I=181 U=380	-1 -8I	VACON 110CXL4 =110 I=210	
- 110 _	12	4*95 125	2 -75-24 1 n=250 / =75 ; I=181 U=380	-1 - 8 II	VACON 110CXL4 =110 I=210	
- 10/1	13	3*70 + 1*35 160	AB 250 S - 8 2 n=735 / =37 I=87	- 12 - 1	VLT 6052 =37 I=80	
- 10/2	14	3*70 + 1*35 155	AB 250 S - 8 2 n=735 / =37 I=87	- 12 - 2	VLT 6052 =37 I=80	

200 -1	15	3*3(1*150) – 10 -6 3*95 – 40	-21 -6 I	
200 -1	16	2(3*150) – 10 -6 3*95 – 35	- 21 -6 II	
-41	17	$\begin{array}{r} -6\ 3^{*}185 + 1^{*}95 \\ -\ 20 \\ 2(3^{*}185 + 1^{*}95) \\ -\ 100 \end{array}$	- 20 -6 I	

. 3.3.

. 3.6.

. 3.7.

. 3.8.

. 3.9.

. 3.10.

50

.4.2. 3- 150

250

.4.4. 7- 350

.4.10. 7- 350

550

.4.12. 13- 650

.4.13.

.4.14.